Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 111(8): 1361-1374, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29744693

RESUMO

The geological, hydrological and microbiological features of the Salar de Atacama, the most extensive evaporitic sedimentary basin in the Atacama Desert of northern Chile, have been extensively studied. In contrast, relatively little attention has been paid to the composition and roles of microbial communities in hypersaline lakes which are a unique feature in the Salar. In the present study biochemical, chemical and molecular biological tools were used to determine the composition and roles of microbial communities in water, microbial mats and sediments along a marked salinity gradient in Laguna Puilar which is located in the "Los Flamencos" National Reserve. The bacterial communities at the sampling sites were dominated by members of the phyla Bacteroidetes, Chloroflexi, Cyanobacteria and Proteobacteria. Stable isotope and fatty acid analyses revealed marked variability in the composition of microbial mats at different sampling sites both horizontally (at different sites) and vertically (in the different layers). The Laguna Puilar was shown to be a microbially dominated ecosystem in which more than 60% of the fatty acids at particular sites are of bacterial origin. Our pioneering studies also suggest that the energy budgets of avian consumers (three flamingo species) and dominant invertebrates (amphipods and gastropods) use minerals as a source of energy and nutrients. Overall, the results of this study support the view that the Salar de Atacama is a heterogeneous and fragile ecosystem where small changes in environmental conditions may alter the balance of microbial communities with possible consequences at different trophic levels.


Assuntos
Bactérias/genética , Microbiologia da Água , Bactérias/isolamento & purificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Biodiversidade , Chile , Chloroflexi , Ecossistema , Sedimentos Geológicos/microbiologia , Filogenia , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Salinidade
2.
Front Microbiol ; 13: 1020491, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726571

RESUMO

Taxonomic and functional microbial communities may respond differently to anthropogenic coastal impacts, but ecological quality monitoring assessments using environmental DNA and RNA (eDNA/eRNA) in response to pollution are poorly understood. In the present study, we investigated the utility of the co-occurrence network approach's to comprehensively explore both structure and potential functions of benthic marine microbial communities and their responses to Cu and Fe fractioning from two sediment deposition coastal zones of northern Chile via 16S rRNA gene metabarcoding. The results revealed substantial differences in the microbial communities, with the predominance of two distinct module hubs based on study zone. This indicates that habitat influences microbial co-occurrence networks. Indeed, the discriminant analysis allowed us to identify keystone taxa with significant differences in eDNA and eRNA comparison between sampled zones, revealing that Beggiatoaceae, Carnobacteriaceae, and Nitrosococcaceae were the primary representatives from Off Loa, whereas Enterobacteriaceae, Corynebacteriaceae, Latescibacteraceae, and Clostridiaceae were the families responsible for the observed changes in Mejillones Bay. The quantitative evidence from the multivariate analyses supports that the benthic microbial assemblages' features were linked to specific environments associated with Cu and Fe fractions, mainly in the Bay. Furthermore, the predicted functional microbial structure suggested that transporters and DNA repair allow the communities to respond to metals and endure the interacting variable environmental factors like dissolved oxygen, temperature, and salinity. Moreover, some active taxa recovered are associated with anthropogenic impact, potentially harboring antibiotic resistance and other threats in the coastal zone. Overall, the method of scoping eRNA in parallel with eDNA applied here has the capacity to significantly enhance the spatial and functional understanding of real-time microbial assemblages and, in turn, would have the potential to increase the acuity of biomonitoring programs key to responding to immediate management needs for the marine environment.

3.
Environ Pollut ; 286: 117281, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33992902

RESUMO

Mejillones Bay is a coastal ecosystem situated in an oxygen-deficient upwelling area impacted by mining activities in the coastal desert region of northern Chile, where conspicuous microbial life develops in the sediments. Herein, heavy metal (loid)s (HMs) such as Cu, Pb, As, Zn, Al, Fe, Cd, Mo, Ni and V as well as benthic microbial communities were studied using spectrometry and iTag-16 S rRNA sequencing. Samples were taken from two contrasting sedimentary localities in the Bay named Punta Rieles (PR) and Punta Chacaya (PC) within 10-50 m water-depth gradient. PR sediments were organic matter rich (21.1% of TOM at 50 m) and overlaid with low-oxygen waters (<0.06 ml O2/L bottom layer) compared with PC. In general, HMs like Al, Ni, Cd, As and Pb tended to increase in concentration with depth in PR, while the opposite pattern was observed in PC. In addition, PR presented a higher number of unique families (72) compared to PC (35). Among the top ten microbial families, Desulfobulbaceae (4.6% vs. 3.2%), Flavobacteriaceae (2.8% vs. 2.3%) and Anaerolineaceae (3.3% vs. 2.3%) dominated in PR, meanwhile Actinomarinales_Unclassified (8.1% vs. 4.2%) and Sandaracinaceae (4.4% vs. 2.0%) were more abundant in PC. Multivariate analyses confirmed that water depth-related variation was a good proxy for oxygen conditions and metal concentrations, explaining the structure of benthic microbial assemblages. Cd, Ni, As and Pb showed uniformly positive associations with communities that represented the keystone taxa in the co-occurrence network, including Anaerolineaceae, Thiotrichaceae, Desulfobulbaceae, Desulfarculaceae and Bacteroidales_unclassified communities. Collectively, these findings provide new insights for establishing the ecological interconnections of benthic microorganisms in response to metal contamination in a coastal upwelling environment.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Baías , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Metais Pesados/análise , Oxigênio , Poluentes Químicos da Água/análise
4.
PeerJ ; 8: e9927, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062423

RESUMO

The Loa River is the only perennial artery that crosses the Atacama Desert in northern Chile. It plays an important role in the ecological and economic development of the most water-stressed region, revealing the impact of the mining industry, which exacerbate regional water shortages for many organisms and ecological processes. Despite this, the river system has remained understudied. To our knowledge, this study provides the first effort to attempt to compare the microbial communities at spatial scale along the Loa River, as well as investigate the physicochemical factors that could modulate this important biological component that still remains largely unexplored. The analysis of the spatial bacterial distribution and their interconnections in the water column and sediment samples from eight sites located in three sections along the river catchment (upper, middle and lower) was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. Among a total of 543 ASVs identified at the family level, over 40.5% were cosmopolitan in the river and distributed within a preference pattern by the sediment substrate with 162 unique ASVs, while only 87 were specific to the column water. Bacterial diversity gradually decreased from the headwaters, where the upper section had the largest number of unique families. Distinct groupings of bacterial communities often associated with anthropogenic disturbance, including Burkholderiaceae and Flavobacteriaceae families were predominant in the less-impacted upstream section. Members of the Arcobacteraceae and Marinomonadaceae were prominent in the agriculturally and mining-impacted middle sector while Rhodobacteraceae and Coxiellaceae were most abundant families in downstream sites. Such shifts in the community structure were also related to the influence of salinity, chlorophyll, dissolved oxygen and redox potential. Network analyses corroborated the strong connectivity and modular structure of bacterial communities across this desert river, shedding light on taxonomic relatedness of co-occurring species and highlighting the need for planning the integral conservation of this basin.

5.
Front Microbiol ; 10: 1193, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244788

RESUMO

Our understanding of the icy-habitat microbiome is likely limited by a lack of reliable data on microorganisms inhabiting underground ice that has accumulated inside caves. To characterize how environmental variation impacts cave ice microbial community structure, we determined the composition of total and potentially active bacterial communities along a 13,000-year-old ice core from Scarisoara cave (Romania) through 16S rRNA gene Illumina sequencing. An average of 2,546 prokaryotic gDNA operational taxonomic units (OTUs) and 585 cDNA OTUs were identified across the perennial cave ice block and analyzed in relation to the geochemical composition of ice layers. The total microbial community and the putative active fraction displayed dissimilar taxa profiles. The ice-contained microbiome was dominated by Actinobacteria with a variable representation of Proteobacteria, while the putative active microbial community was equally shared between Proteobacteria and Firmicutes. Accordingly, a major presence of Cryobacterium, Lysinomonas, Pedobacter, and Aeromicrobium phylotypes homologous to psychrotrophic and psychrophilic bacteria from various cold environments were noted in the total community, while the prevalent putative active bacteria belonged to Clostridium, Pseudomonas, Janthinobacterium, Stenotrophomonas, and Massilia genera. Variation in the microbial cell density of ice strata with the dissolved organic carbon (DOC) content and the strong correlation of DOC and silicon concentrations revealed a major impact of depositional processes on microbial abundance throughout the ice block. Post-depositional processes appeared to occur mostly during the 4,000-7,000 years BP interval. A major bacterial composition shift was observed in 4,500-5,000-year-old ice, leading to a high representation of Beta- and Deltaproteobacteria in the potentially active community in response to the increased concentrations of DOC and major chemical elements. Estimated metabolic rates suggested the presence of a viable microbial community within the cave ice block, characterized by a maintenance metabolism in most strata and growth capacity in those ice deposits with high microbial abundance and DOC content. This first survey of microbial distribution in perennial cave ice formed since the Last Glacial period revealed a complex potentially active community, highlighting major shifts in community composition associated with geochemical changes that took place during climatic events that occurred about 5,000 years ago, with putative formation of photosynthetic biofilms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA