Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Physiol Rev ; 98(2): 667-695, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29442595

RESUMO

Epigenetics is the study of heritable mechanisms that can modify gene activity and phenotype without modifying the genetic code. The basis for the concept of epigenetics originated more than 2,000 yr ago as a theory to explain organismal development. However, the definition of epigenetics continues to evolve as we identify more of the components that make up the epigenome and dissect the complex manner by which they regulate and are regulated by cellular functions. A substantial and growing body of research shows that nutrition plays a significant role in regulating the epigenome. Here, we critically assess this diverse body of evidence elucidating the role of nutrition in modulating the epigenome and summarize the impact such changes have on molecular and physiological outcomes with regards to human health.


Assuntos
Dieta , Epigênese Genética/genética , Distúrbios Nutricionais/genética , Estado Nutricional/genética , Animais , Epigenômica , Humanos , Fenótipo
2.
Hum Mol Genet ; 32(3): 402-416, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35994039

RESUMO

Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.


Assuntos
Variações do Número de Cópias de DNA , Metilação de DNA , Humanos , Metilação de DNA/genética , Impressão Genômica/genética , Dissomia Uniparental , Diferenciação Celular/genética
3.
Arch Toxicol ; 97(11): 2879-2892, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37615676

RESUMO

Chronic exposure to inorganic arsenic (iAs) has been linked to diabetes in both humans and mice, but the role of iAs exposure prior to conception and its transgenerational effects are understudied. The present study investigated transgenerational effects of preconception iAs exposure in C57BL/6J mice, focusing on metabolic phenotypes of G1 and G2 offspring. Body composition and diabetes indicators, including fasting blood glucose, fasting plasma insulin, glucose tolerance, and indicators of insulin resistance and beta cell function, were examined in both generations. The results suggest that the preconception iAs exposure in the parental (G0) generation induced diabetic phenotypes in G1 and G2 offspring in a sex-dependent manner. G1 females from iAs-exposed parents developed insulin resistance while no significant effects were found in G1 males. In the G2 generation, insulin resistance was observed only in males from iAs-exposed grandparents and was associated with higher bodyweights and adiposity. Similar trends were observed in G2 females from iAs-exposed grandparents, but these did not reach statistical significance. Thus, preconception iAs exposure altered metabolic phenotype across two generations of mouse offspring. Future research will investigate the molecular mechanisms underlying these transgenerational effects, including epigenomic and transcriptomic profiles of germ cells and tissues from G0, G1 and G2 generations.


Assuntos
Arsenitos , Resistência à Insulina , Feminino , Humanos , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Arsenitos/toxicidade , Fenótipo
4.
Toxicol Appl Pharmacol ; 455: 116266, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36209798

RESUMO

We have previously reported that preconception exposure to iAs may contribute to the development of diabetes in mouse offspring by altering gene expressions in paternal sperm. However, the individual contributions of iAs and its methylated metabolites, monomethylated arsenic (MAs) and dimethylated arsenic (DMAs), to changes in the sperm transcriptome could not be determined because all three As species are present in sperm after in vivo iAs exposure. The goal of the present study was to assess As species-specific effects using an ex vivo model. We exposed freshly isolated mouse sperm to either 0.1 or 1 µM arsenite (iAsIII) or the methylated trivalent arsenicals, MAsIII and DMAsIII, and used RNA-sequencing to identify differentially expressed genes, enriched pathways, and associated protein networks. For all arsenicals tested, the exposures to 0.1 µM concentrations had greater effects on gene expression than 1 µM exposures. Transcription factor AP-1 and B cell receptor complexes were the most significantly enriched pathways in sperm exposed to 0.1 µM iAsIII. The Mre11 complex and Antigen processing were top pathways targeted by exposure to 0.1 µM MAsIII and DMAsIII, respectively. While there was no overlap between gene transcripts altered by ex vivo exposures in the present study and those altered by in vivo exposure in our prior work, several pathways were shared, including PI3K-Akt signaling, Focal adhesion, and Extracellular matrix receptor interaction pathways. Notably, the protein networks associated with these pathways included those with known roles in diabetes. This study is the first to assess the As species-specific effects on sperm transcriptome, linking these effects to the diabetogenic effects of iAs exposure.


Assuntos
Arsênio , Arsenicais , Arsenitos , Diabetes Mellitus , Camundongos , Masculino , Animais , Arsenitos/toxicidade , Arsenitos/metabolismo , Arsênio/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição AP-1/metabolismo , Metilação , Sêmen/metabolismo , Arsenicais/farmacologia , Diabetes Mellitus/metabolismo , Espermatozoides/metabolismo , RNA/metabolismo , Transcrição Gênica , Receptores de Antígenos de Linfócitos B/metabolismo
5.
Arch Toxicol ; 95(2): 473-488, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33145626

RESUMO

Chronic exposure to inorganic arsenic (iAs) has been linked to diabetic phenotypes in both humans and mice. However, diabetogenic effects of iAs exposure during specific developmental windows have never been systematically studied. We have previously shown that in mice, combined preconception and in utero exposures to iAs resulted in impaired glucose homeostasis in male offspring. The goal of the present study was to determine if preconception exposure alone can contribute to this outcome. We have examined metabolic phenotypes in male and female offspring from dams and sires that were exposed to iAs in drinking water (0 or 200 µg As/L) for 10 weeks prior to mating. The effects of iAs exposure on gene expression profiles in parental germ cells, and pancreatic islets and livers from offspring were assessed using RNA sequencing. We found that iAs exposure significantly altered transcript levels of genes, including diabetes-related genes, in the sperm of sires. Notably, some of the same gene transcripts and the associated pathways were also altered in the liver of the offspring. The exposure had a more subtle effect on gene expression in maternal oocytes and in pancreatic islets of the offspring. In female offspring, the preconception exposure was associated with increased adiposity, but lower blood glucose after fasting and after glucose challenge. HOMA-IR, the indicator of insulin resistance, was also lower. In contrast, the preconception exposure had no effects on blood glucose measures in male offspring. However, males from parents exposed to iAs had higher plasma insulin after glucose challenge and higher insulinogenic index than control offspring, indicating a greater requirement for insulin to maintain glucose homeostasis. Our results suggest that preconception exposure may contribute to the development of diabetic phenotype in male offspring, possibly mediated through germ cell-associated inheritance. Future research can investigate role of epigenetics in this phenomenon. The paradoxical outcomes in female offspring, suggesting a protective effect of the preconception exposure, warrant further investigation.


Assuntos
Arsenitos/toxicidade , Diabetes Mellitus/induzido quimicamente , Regulação da Expressão Gênica/efeitos dos fármacos , Células Germinativas/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Adiposidade/efeitos dos fármacos , Animais , Glicemia , Diabetes Mellitus/metabolismo , Feminino , Células Germinativas/metabolismo , Homeostase/efeitos dos fármacos , Insulina/sangue , Resistência à Insulina , Ilhotas Pancreáticas/metabolismo , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Análise de Sequência de RNA , Fatores Sexuais
6.
PLoS Genet ; 14(2): e1007243, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470501

RESUMO

Differential DNA methylation defects of H19/IGF2 are associated with congenital growth disorders characterized by opposite clinical pictures. Due to structural differences between human and mouse, the mechanisms by which mutations of the H19/IGF2 Imprinting Control region (IC1) result in these diseases are undefined. To address this issue, we previously generated a mouse line carrying a humanized IC1 (hIC1) and now replaced the wildtype with a mutant IC1 identified in the overgrowth-associated Beckwith-Wiedemann syndrome. The new humanized mouse line shows pre/post-natal overgrowth on maternal transmission and pre/post-natal undergrowth on paternal transmission of the mutation. The mutant hIC1 acquires abnormal methylation during development causing opposite H19/Igf2 imprinting defects on maternal and paternal chromosomes. Differential and possibly mosaic Igf2 expression and imprinting is associated with asymmetric growth of bilateral organs. Furthermore, tissue-specific imprinting defects result in deficient liver- and placenta-derived Igf2 on paternal transmission and excessive Igf2 in peripheral tissues on maternal transmission, providing a possible molecular explanation for imprinting-associated and phenotypically contrasting growth disorders.


Assuntos
Impressão Genômica/genética , Transtornos do Crescimento/congênito , Transtornos do Crescimento/genética , Mosaicismo , Animais , Células Cultivadas , Feminino , Humanos , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas , Mutação , Especificidade de Órgãos/genética , Fenótipo , Gravidez , RNA Longo não Codificante/genética
7.
Mol Cell ; 44(3): 341-2, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22055179

RESUMO

In this issue of Molecular Cell, Quenneville et al. (2011) characterize the role of ZFP57 in the maintenance of DNA methylation at imprinting control regions (ICRs), revealing an allele-specific binding pattern, binding motif, and interactions with other epigenetic regulators.

8.
Hum Mol Genet ; 23(23): 6246-59, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24990148

RESUMO

Parent-of-origin-specific expression at imprinted genes is regulated by allele-specific DNA methylation at imprinting control regions (ICRs). This mechanism of gene regulation, where one element controls allelic expression of multiple genes, is not fully understood. Furthermore, the mechanism of gene dysregulation through ICR epimutations, such as loss or gain of DNA methylation, remains a mystery. We have used genetic mouse models to dissect ICR-mediated genetic and epigenetic regulation of imprinted gene expression. The H19/insulin-like growth factor 2 (Igf2) ICR has a multifunctional role including insulation, activation and repression. Microdeletions at the human H19/IGF2 ICR (IC1) are proposed to be responsible for IC1 epimutations associated with imprinting disorders such as Beckwith-Wiedemann syndrome (BWS). Here, we have generated and characterized a mouse model that mimics BWS microdeletions to define the role of the deleted sequence in establishing and maintaining epigenetic marks and imprinted expression at the H19/IGF2 locus. These mice carry a 1.3 kb deletion at the H19/Igf2 ICR [Δ2,3] removing two of four CCCTC-binding factor (CTCF) sites and the intervening sequence, ∼75% of the ICR. Surprisingly, the Δ2,3 deletion does not perturb DNA methylation at the ICR; however, it does disrupt imprinted expression. While repressive functions of the ICR are compromised by the deletion regardless of tissue type, insulator function is only disrupted in tissues of mesodermal origin where a significant amount of CTCF is poly(ADP-ribosyl)ated. These findings suggest that insulator activity of the H19/Igf2 ICR varies by cell type and may depend on cell-specific enhancers as well as posttranslational modifications of the insulator protein CTCF.


Assuntos
Sequência de Bases , Síndrome de Beckwith-Wiedemann/genética , Impressão Genômica , Fator de Crescimento Insulin-Like II/genética , Deleção de Sequência , Animais , Fator de Ligação a CCCTC , Metilação de DNA , Epigênese Genética , Humanos , Elementos Isolantes , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Camundongos Transgênicos , Mutação , Especificidade de Órgãos , Proteínas Repressoras/metabolismo
9.
Dev Biol ; 355(2): 349-57, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21600199

RESUMO

Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19(ICR∆IVS)), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19(ICR-8nrCG)), which only changes CpG content at the ICR. Individually, both mutant alleles (H19(ICR∆IVS) and H19(ICR-8nrCG)) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.


Assuntos
Regulação da Expressão Gênica/fisiologia , Impressão Genômica/fisiologia , RNA não Traduzido/metabolismo , Elementos Reguladores de Transcrição/fisiologia , Proteínas Repressoras/metabolismo , Animais , Southern Blotting , Fator de Ligação a CCCTC , Cruzamentos Genéticos , Metilação de DNA/genética , Primers do DNA/genética , Eletroporação , Vetores Genéticos/genética , Impressão Genômica/genética , Padrões de Herança/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , RNA Longo não Codificante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência/genética
10.
Epigenet Insights ; 13: 2516865720970575, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33313480

RESUMO

Deficiency of methyl donor nutrients folate, choline, and methionine (methyl deficiency) during gestation can impair fetal development and perturb DNA methylation. Here, we assessed genetic susceptibility to methyl deficiency by comparing effects in wildtype C57BL/6J (B6) mice to mutant mice carrying a 1.3 kb deletion at the H19/Igf2 Imprinting Control Region (ICR) (H19 ICRΔ2,3). The H19 ICRΔ2,3 mutation mimics microdeletions observed in Beckwith-Wiedemann syndrome (BWS) patients, who exhibit epimutations in cis that cause loss of imprinting and fetal overgrowth. Dams were treated during pregnancy with 1 of 4 methyl sufficient (MS) or methyl deficient (MD) diets, with or without the antibiotic commonly used to deplete folate producing gut microbes. As expected, after ~9 weeks of treatment, dams in MD and MD + antibiotic groups exhibited substantially reduced plasma folate concentrations. H19 ICRΔ2,3 mutant lines were more susceptible to adverse pregnancy outcomes caused by methyl deficiency (reduced birth rate and increased pup lethality) and antibiotic (decreased litter size and litter survival). Surprisingly, pup growth/development was only minimally affected by methyl deficiency, while antibiotic treatment caused inverse effects on B6 and H19 ICRΔ2,3 lines. B6 pups treated with antibiotic exhibited increased neonatal and weanling bodyweight, while both wildtype and mutant pups of heterozygous H19 ICRΔ2,3/+ dams exhibited decreased neonatal bodyweight that persisted into adulthood. Interestingly, only antibiotic-treated pups carrying the H19 ICRΔ2,3 mutation exhibited altered DNA methylation at the H19/Igf2 ICR, suggesting ICR epimutation was not sufficient to explain the altered phenotypes. These findings demonstrate that genetic mutation of the H19/Igf2 ICR increases offspring susceptibility to developmental perturbation in the methyl deficiency model, maternal and pup genotype play an essential role, and antibiotic treatment in the model also plays a key independent role.

11.
Curr Dev Nutr ; 4(8): nzaa106, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32851199

RESUMO

BACKGROUND: Liver metabolite concentrations have the potential to be key biomarkers of systemic metabolic dysfunction and overall health. However, for most conditions we do not know the extent to which genetic differences regulate susceptibility to metabolic responses. This limits our ability to detect and diagnose effects in heterogeneous populations. OBJECTIVES: Here, we investigated the extent to which naturally occurring genetic differences regulate maternal liver metabolic response to vitamin D deficiency (VDD), particularly during perinatal periods when such changes can adversely affect maternal and fetal health. METHODS: We used a panel of 8 inbred Collaborative Cross (CC) mouse strains, each with a different genetic background (72 dams, 3-6/treatment group, per strain). We identified robust maternal liver metabolic responses to vitamin D depletion before and during gestation and lactation using a vitamin-D-deficient (VDD; 0 IU vitamin D3/kg) or -sufficient diet (1000 IU vitamin D3/kg). We then identified VDD-induced metabolite changes influenced by strain genetic background. RESULTS: We detected a significant VDD effect by orthogonal partial least squares discriminant analysis (Q2 = 0.266, pQ2 = 0.002): primarily, altered concentrations of 78 metabolites involved in lipid, amino acid, and nucleotide metabolism (variable importance to projection score ≥1.5). Metabolites in unsaturated fatty acid and glycerophospholipid metabolism pathways were significantly enriched [False Discovery Rate (FDR) <0.05]. VDD also significantly altered concentrations of putative markers of uremic toxemia, acylglycerols, and dipeptides. The extent of the metabolic response to VDD was strongly dependent on genetic strain, ranging from robustly responsive to nonresponsive. Two strains (CC017/Unc and CC032/GeniUnc) were particularly sensitive to VDD; however, each strain altered different pathways. CONCLUSIONS: These novel findings demonstrate that maternal VDD induces different liver metabolic effects in different genetic backgrounds. Strains with differing susceptibility and metabolic response to VDD represent unique tools to identify causal susceptibility factors and further elucidate the role of VDD-induced metabolic changes in maternal and/or fetal health for ultimately translating findings to human populations.

12.
J Endocrinol ; 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30909167

RESUMO

Vitamin D is an essential nutrient that is metabolized in the body to generate an active metabolite (1,25(OH)2D) with hormone-like activity and highly diverse roles in cellular function. Vitamin D deficiency (VDD) is a prevalent but easily preventable nutritional disturbance. Emerging evidence demonstrates the importance of sufficient vitamin D concentrations during fetal life with deficiencies leading to long-term effects into adulthood. Here, we provide a detailed review and perspective of evidence for the role of maternal VDD in offspring long term health, particularly as it relates to Developmental Origins of Health and Disease (DOHaD). We focus on roles in neurobehavioral and cardiometabolic disorders in humans and highlight recent findings from zebrafish and rodent models that probe potential mechanisms linking early life VDD to later life health outcomes. Moreover, we explore evidence implicating epigenetic mechanisms as a mediator of this link. Gaps in our current understanding of how maternal VDD might result in deleterious offspring outcomes later in life are also addressed.

13.
Mutat Res ; 647(1-2): 77-85, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18778719

RESUMO

Genomic imprinting is a form of epigenetic gene regulation that results in expression from a single allele in a parent-of-origin-dependent manner. This form of monoallelic expression affects a small but growing number of genes and is essential to normal mammalian development. Despite extensive studies and some major breakthroughs regarding this intriguing phenomenon, we have not yet fully characterized the underlying molecular mechanisms of genomic imprinting. This is in part due to the complexity of the system in that the epigenetic markings required for proper imprinting must be established in the germline, maintained throughout development, and then erased before being re-established in the next generation's germline. Furthermore, imprinted gene expression is often tissue or stage-specific. It has also become clear that while imprinted loci across the genome seem to rely consistently on epigenetic markings of DNA methylation and/or histone modifications to discern parental alleles, the regulatory activities underlying these markings vary among loci. Here, we discuss different modes of imprinting regulation in mammals and how perturbations of these systems result in human disease. We focus on the mechanism of genomic imprinting mediated by insulators as is present at the H19/Igf2 locus, and by non-coding RNA present at the Igf2r and Kcnq1 loci. In addition to imprinting mechanisms at autosomal loci, what is known about imprinted X-chromosome inactivation and how it compares to autosomal imprinting is also discussed. Overall, this review summarizes many years of imprinting research, while pointing out exciting new discoveries that further elucidate the mechanism of genomic imprinting, and speculating on areas that require further investigation.


Assuntos
Impressão Genômica , Mamíferos/genética , Animais , Humanos , Elementos Isolantes , Camundongos , Modelos Genéticos , RNA Longo não Codificante , RNA não Traduzido , Inativação do Cromossomo X
14.
Epigenetics ; 13(9): 959-974, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30239288

RESUMO

Suboptimal environmental conditions during development can substantially alter the epigenome. Stable environmentally-induced changes to the germline epigenome, in particular, have important implications for the health of the next generation. We showed previously that developmental vitamin D depletion (DVD) resulted in loss of DNA methylation at several imprinted loci over two generations. Here, we assessed the impact of DVD on genome-wide methylation in mouse sperm in order to characterize the number, extent and distribution of methylation changes in response to DVD and to find genes that may be susceptible to this prevalent environmental perturbation. We detected 15,827 loci that were differentially methylated in DVD mouse sperm vs. controls. Most epimutations (69%) were loss of methylation, and the extent of methylation change and number of CpGs affected in a region were associated with genic location and baseline methylation state. Methylation response to DVD at validated loci was only detected in offspring that exhibited a phenotypic response to DVD (increased body and testes weight) suggesting the two types of responses are linked, though a causal relationship is unclear. Epimutations localized to regions enriched for developmental and metabolic genes and pathway analyses showed enrichment for Cadherin, Wnt, PDGF and Integrin signaling pathways. These findings show for the first time that vitamin D status during development leads to substantial DNA methylation changes across the sperm genome and that locus susceptibility is linked to genomic and epigenomic context.


Assuntos
Metilação de DNA , Espermatozoides/metabolismo , Deficiência de Vitamina D/genética , Animais , Ilhas de CpG , Masculino , Camundongos , Espermatozoides/crescimento & desenvolvimento
15.
Reprod Toxicol ; 78: 9-19, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29535025

RESUMO

In utero exposure to vinclozolin (VIN), an antiandrogenic fungicide, is linked to multigenerational phenotypic and epigenetic effects. Mechanisms remain unclear. We assessed the role of antiandrogenic activity and DNA sequence context by comparing effects of VIN vs. M2 (metabolite with greater antiandrogenic activity) and wild-type C57BL/6 (B6) mice vs. mice carrying mutations at the previously reported VIN-responsive H19/Igf2 locus. First generation offspring from VIN-treated 8nrCG mutant dams exhibited increased body weight and decreased sperm ICR methylation. Second generation pups sired by affected males exhibited decreased neonatal body weight but only when dam was unexposed. Offspring from M2 treatments, B6 dams, 8nrCG sires or additional mutant lines were not similarly affected. Therefore, pup response to VIN over two generations detected here was an 8nrCG-specific maternal effect, independent of antiandrogenic activity. These findings demonstrate that maternal effects and crossing scheme play a major role in multigenerational response to in utero exposures.


Assuntos
Disruptores Endócrinos/toxicidade , Fungicidas Industriais/toxicidade , Oxazóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Peso Corporal/efeitos dos fármacos , Cruzamento , Metilação de DNA , Epigênese Genética , Feminino , Genótipo , Masculino , Troca Materno-Fetal , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Fenótipo , Gravidez , Contagem de Espermatozoides , Espermatozoides/efeitos dos fármacos
16.
Biol Reprod ; 76(2): 286-93, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17050856

RESUMO

When females of the DDK inbred mouse strain are mated to males of other strains, 90-100% of the resulting embryos die during early embryonic development. This DDK syndrome lethality results from incompatibility between an ooplasmic DDK factor and a non-DDK paternal gene, which map to closely linked loci on chromosome 11. It has been proposed that the expression of the gene that encodes the ooplasmic factor is subject to allelic exclusion in oocytes. Previous studies have demonstrated the existence of recessive modifiers that increase lethality in the C57BL/6 and BALB/c strains. These modifiers are thought to skew the choice of allele undergoing allelic exclusion in the oocytes of heterozygous females. In the present study, we demonstrate the presence of modifiers in three Mus musculus domesticus wild-derived strains, PERA, PERC, and RBA. These modifiers completely rescued DDK syndrome lethality. We mapped the major locus that is responsible for rescue in PERA and PERC crosses to proximal chromosome 13 and named this locus Rmod1 (Rescue Modifier of the DDK Syndrome 1). Our experiments demonstrate that PERA or PERC alleles at Rmod1 rescue lethality independently of allelic exclusion. In addition, rescue of the lethal phenotype depends on the parental origin of the Rmod1 alleles; transmission through the dam leads to rescue, while transmission through the sire has no effect.


Assuntos
Cruzamentos Genéticos , Morte Fetal/genética , Morte Fetal/prevenção & controle , Camundongos Endogâmicos/genética , Alelos , Animais , Mapeamento Cromossômico , Desenvolvimento Embrionário , Pai , Feminino , Genes Letais , Masculino , Camundongos , Camundongos Endogâmicos/embriologia , Mães , Fenótipo , Síndrome
17.
J Nutr Biochem ; 30: 1-13, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27012616

RESUMO

In recent years, the etiology of human disease has greatly improved with the inclusion of epigenetic mechanisms, in particular as a common link between environment and disease. However, for most diseases we lack a detailed interpretation of the epigenetic regulatory pathways perturbed by environment and causal mechanisms. Here, we focus on recent findings elucidating nutrient-related epigenetic changes linked to obesity. We highlight studies demonstrating that obesity is a complex disease linked to disruption of epigenetically regulated metabolic pathways in the brain, adipose tissue and liver. These pathways regulate (1) homeostatic and hedonic eating behaviors, (2) adipocyte differentiation and fat accumulation, and (3) energy expenditure. By compiling these data, we illustrate that obesity-related phenotypes are repeatedly linked to disruption of critical epigenetic mechanisms that regulate key metabolic genes. These data are supported by genetic mutation of key epigenetic regulators, and many of the diet-induced epigenetic mechanisms of obesity are also perturbed by exposure to environmental toxicants. Identifying similarly perturbed epigenetic mechanisms in multiple experimental models of obesity strengthens the translational applications of these findings. We also discuss many of the ongoing challenges to understanding the role of environmentally induced epigenetic pathways in obesity and suggest future studies to elucidate these roles. This assessment illustrates our current understanding of molecular pathways of obesity that are susceptible to environmental perturbation via epigenetic mechanisms. Thus, it lays the groundwork for dissecting the complex interactions between diet, genes and toxicants that contribute to obesity and obesity-related phenotypes.


Assuntos
Epigênese Genética , Obesidade/etiologia , Animais , Poluentes Ambientais/toxicidade , Humanos , Obesidade/genética
18.
Clin Epigenetics ; 8: 107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27777636

RESUMO

BACKGROUND: Environmental perturbation of epigenetic mechanisms is linked to a growing number of diseases. Characterizing the role environmental factors play in modifying the epigenome is important for disease etiology. Vitamin D is an essential nutrient affecting brain, bone, heart, immune and reproductive health. Vitamin D insufficiency is a global issue, and the role in maternal and child health remains under investigation. METHODS: We used Collaborative Cross (CC) inbred mice to characterize the effect of maternal vitamin D depletion on offspring phenotypic and epigenetic outcomes at imprinted domains (H19/Igf2, Snrpn, Dlk1/Gtl2, and Grb10) in the soma (liver) and germline (sperm). We assessed outcomes in two generations of offspring to determine heritability. We used reciprocal crosses between lines CC001/Unc and CC011/Unc to investigate parent of origin effects. RESULTS: Maternal vitamin D deficiency led to altered body weight and DNA methylation in two generations of offspring. Loci assayed in adult liver and sperm were mostly hypomethylated, but changes were few and small in effect size (<7 % difference on average). There was no change in total expression of genes adjacent to methylation changes in neonatal liver. Methylation changes were cell type specific such that changes at IG-DMR were present in sperm but not in liver. Some methylation changes were distinct between generations such that methylation changes at the H19ICR in second-generation liver were not present in first-generation sperm or liver. Interestingly, some diet-dependent changes in body weight and methylation were seemingly influenced by parent of origin such that reciprocal crosses exhibited inverse effects. CONCLUSIONS: These findings demonstrate that maternal vitamin D status plays a role in determining DNA methylation state in the germline and soma. Detection of methylation changes in the unexposed second-generation demonstrates that maternal vitamin D depletion can have long-term effects on the epigenome of subsequent generations. Differences in vitamin D-dependent epigenetic state between cell types and generations indicate perturbation of the epigenetic landscape rather than a targeted, locus-specific effect. While the biological importance of these subtle changes remains unclear, they warrant an investigation of epigenome-wide effects of maternal vitamin D depletion.


Assuntos
Metilação de DNA , Impressão Genômica , Fígado/química , Efeitos Tardios da Exposição Pré-Natal/genética , Espermatozoides/química , Deficiência de Vitamina D/genética , Animais , Peso Corporal , Modelos Animais de Doenças , Epigênese Genética , Feminino , Humanos , Masculino , Camundongos , Mães , Gravidez
19.
Genome Res ; 14(10A): 1880-7, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15466288

RESUMO

With the completion of the mouse genome sequence, it is possible to define the amount, type, and organization of the genetic variation in this species. Recent reports have provided an overview of the structure of genetic variation among classical laboratory mice. On the other hand, little is known about the structure of genetic variation among wild-derived strains with the exception of the presence of higher levels of diversity. We have estimated the sequence diversity due to substitutions and insertions/deletions among 20 inbred strains of Mus musculus, chosen to enable interpretation of the molecular variation within a clear evolutionary framework. Here, we show that the level of sequence diversity present among these strains is one to two orders of magnitude higher than the level of sequence diversity observed in the human population, and only a minor fraction of the sequence differences observed is found among classical laboratory strains. Our analyses also demonstrate that deletions are significantly more frequent than insertions. We estimate that 50% of the total variation identified in M. musculus may be recovered in intrasubspecific crosses. Alleles at variants positions can be classified into 164 strain distribution patterns, a number exceeding those reported and predicted in panels of classical inbred strains. The number of strains, the analysis of multiple loci scattered across the genome, and the mosaic nature of the genome in hybrid and classical strains contribute to the observed diversity of strain distribution patterns. However, phylogenetic analyses demonstrate that ancient polymorphisms that segregate across species and subspecies play a major role in the generation of strain distribution patterns.


Assuntos
Haplótipos , Camundongos Endogâmicos/genética , Animais , Camundongos , Mutagênese Insercional , Filogenia , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA