Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA Biol ; 16(10): 1424-1437, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31242083

RESUMO

The facultative intracellular pathogen Listeria monocytogenes can persist and grow in a diverse range of environmental conditions, both outside and within its mammalian host. The alternative sigma factor Sigma B (σB) plays an important role in this adaptability and is critical for the transition into the host. While some of the functions of the σB regulon in facilitating this transition are understood the role of σB-dependent small regulatory RNAs (sRNAs) remain poorly characterized. In this study, we focused on elucidating the function of Rli47, a σB-dependent sRNA that is highly induced in the intestine and in macrophages. Using a combination of in silico and in vivo approaches, a binding interaction was predicted with the Shine-Dalgarno region of the ilvA mRNA, which encodes threonine deaminase, an enzyme required for branched-chain amino acid biosynthesis. Both ilvA transcript levels and threonine deaminase activity were increased in a deletion mutant lacking the rli47 gene. The Δrli47 mutant displayed a shorter growth lag in isoleucine-depleted growth media relative to the wild-type, and a similar phenotype was also observed in a mutant lacking σB. The impact of the Δrli47 on the global transcription profile of the cell was investigated using RNA-seq, and a significant role for Rli47 in modulating amino acid metabolism was uncovered. Taken together, the data point to a model where Rli47 is responsible for specifically repressing isoleucine biosynthesis as a way to restrict growth under harsh conditions, potentially contributing to the survival of L. monocytogenes in niches both outside and within the mammalian host.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Isoleucina/biossíntese , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Pequeno RNA não Traduzido/genética , Fator sigma/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/metabolismo , Transporte Biológico , Perfilação da Expressão Gênica , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , RNA Mensageiro/genética , Pequeno RNA não Traduzido/química , Transcrição Gênica
2.
BMC Genomics ; 16: 954, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26573524

RESUMO

BACKGROUND: Dormant Mycobacterium tuberculosis bacilli are believed to play an important role in latent tuberculosis infection. Previously, we have demonstrated that cultivation of M. tuberculosis in K(+)-deficient medium resulted in generation of dormant cells. These bacilli were non-culturable on solid media (a key feature of dormant M. tuberculosis in vivo) and characterized by low metabolism and tolerance to anti-tuberculosis drugs. The dormant bacteria demonstrated a high potential to reactivation after K(+) reintroduction even after prolonged persistence under rifampicin. In this work, we studied the transcriptome and stability of transcripts in persisting dormant bacilli under arrest of mRNA de novo synthesis. RESULTS: RNA-seq-based analysis of the dormant non-culturable population obtained under rifampicin exposure revealed a 30-50-fold decrease of the total mRNA level, indicating global transcriptional repression. However, the analysis of persisting transcripts displayed a cohort of mRNA molecules coding for biosynthetic enzymes, proteins involved in adaptation and repair processes, detoxification, and control of transcription initiation. This 'dormant transcriptome' demonstrated considerable stability during M. tuberculosis persistence and mRNA de novo synthesis arrest. On the contrary, several small non-coding RNAs showed increased abundance on dormancy. Interestingly, M. tuberculosis entry into dormancy was accompanied by the cleavage of 23S ribosomal RNA at a specific point located outside the ribosome catalytic center. CONCLUSIONS: Dormant non-culturable M. tuberculosis bacilli are characterized by a global transcriptional repression. At the same time, the dormant bacilli retain low-abundant mRNAs, which are considerably stable during in vitro persistence, reflecting their readiness for translation upon early resuscitation steps. Increased abundance of non-coding RNAs on dormancy may indicate their role in the entry into and maintenance of M. tuberculosis dormant non-culturable state.


Assuntos
Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Estabilidade de RNA , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura , Perfilação da Expressão Gênica , Modelos Biológicos , Mycobacterium tuberculosis/citologia , Mycobacterium tuberculosis/efeitos dos fármacos , Fenótipo , Potássio/farmacologia , RNA Bacteriano/genética , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/genética , RNA Ribossômico 23S/metabolismo , Análise de Sequência de RNA
3.
Cell Microbiol ; 14(6): 808-18, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22348543

RESUMO

The species Mycobacterium avium includes several subspecies representing highly specialized avian and mammalian pathogens, non-obligatory pathogens of immune compromised humans and saprophitic organisms. Recently obtained information concerning the diversity of M. avium genomic structures not only clarified phylogenic relationships within this species, but began to shed light on the question of how such closely related microorganisms adapt to the occupation of distinct ecological niches. In this review we discuss specific features of M. avium genetic composition, as well as genetic and molecular aspects of M. avium hominissuis (MAH)-triggered disease pathogenesis, including virulence, penetration, immune response manipulation and host genetic control.


Assuntos
Interações Hospedeiro-Patógeno , Mycobacterium avium/genética , Tuberculose Pulmonar/microbiologia , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Humanos , Viabilidade Microbiana , Mycobacterium avium/metabolismo , Mycobacterium avium/fisiologia
4.
Cancer Cell ; 40(10): 1173-1189.e6, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36220073

RESUMO

Cancer immunotherapy often depends on recognition of peptide epitopes by cytotoxic T lymphocytes (CTLs). The tumor microenvironment (TME) is enriched for peroxynitrite (PNT), a potent oxidant produced by infiltrating myeloid cells and some tumor cells. We demonstrate that PNT alters the profile of MHC class I bound peptides presented on tumor cells. Only CTLs specific for PNT-resistant peptides have a strong antitumor effect in vivo, whereas CTLs specific for PNT-sensitive peptides are not effective. Therapeutic targeting of PNT in mice reduces resistance of tumor cells to CTLs. Melanoma patients with low PNT activity in their tumors demonstrate a better clinical response to immunotherapy than patients with high PNT activity. Our data suggest that intratumoral PNT activity should be considered for the design of neoantigen-based therapy and also may be an important immunotherapeutic target.


Assuntos
Melanoma , Microambiente Tumoral , Animais , Antígenos de Neoplasias/metabolismo , Epitopos , Antígenos de Histocompatibilidade Classe I/metabolismo , Imunoterapia , Melanoma/metabolismo , Camundongos , Oxidantes/metabolismo , Peptídeos , Ácido Peroxinitroso/metabolismo , Linfócitos T Citotóxicos
5.
STAR Protoc ; 1(2): 100046, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-33111092

RESUMO

The structure of 5' untranslated regions (5' UTRs) of bacterial mRNAs often determines the fate of the transcripts. Using a dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) approach, we developed a protocol to generate sequence libraries to determine the base-pairing status of adenines and cytosines in the 5' UTRs of bacterial mRNAs. Our method increases the sequencing depth of the 5' UTRs and allows detection of changes in their structures by sequencing libraries of moderate sizes. For complete details on the use and execution of this protocol, please refer to Ignatov et al. (2020).


Assuntos
Regiões 5' não Traduzidas/genética , Biblioteca Gênica , RNA Bacteriano/genética , RNA-Seq/métodos
6.
Cell Rep ; 30(12): 4027-4040.e7, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209466

RESUMO

Bacterial pathogens often employ RNA regulatory elements located in the 5' untranslated regions (UTRs) to control gene expression. Using a comparative structural analysis, we examine the structure of 5' UTRs at a global scale in the pathogenic bacterium Listeria monocytogenes under different conditions. In addition to discovering an RNA thermoswitch and detecting simultaneous interaction of ribosomes and small RNAs with mRNA, we identify structural changes in the 5' UTR of an mRNA encoding the post-translocation chaperone PrsA2 during infection conditions. We demonstrate that the 5' UTR of the prsA2 mRNA base pairs with the 3' UTR of the full-length hly mRNA encoding listeriolysin O, thus preventing RNase J1-mediated degradation of the prsA2 transcript. Mutants lacking the hly-prsA2 interaction exhibit reduced virulence properties. This work highlights an additional level of RNA regulation, where the mRNA encoding a chaperone is stabilized by the mRNA encoding its substrate.


Assuntos
Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/genética , Listeria monocytogenes/patogenicidade , Chaperonas Moleculares/metabolismo , Fatores de Virulência/genética , Regiões 3' não Traduzidas/genética , Regiões 5' não Traduzidas/genética , Sequência de Bases , Proteínas e Peptídeos de Choque Frio/metabolismo , Biblioteca Gênica , Modelos Biológicos , Peptidilprolil Isomerase/metabolismo , Estabilidade de RNA/genética , RNA Bacteriano/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Ribossomos/metabolismo , Temperatura , Virulência/genética , Fatores de Virulência/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-31850238

RESUMO

Small non-coding RNAs play a significant role in bacterial adaptation to changing environmental conditions. We investigated the dynamics of expression of MTS1338, a small non-coding RNA of Mycobacterium tuberculosis, in the mouse model in vivo, regulation of its expression in the infected macrophages, and the consequences of its overexpression in bacterial cultures. Here we demonstrate that MTS1338 significantly contributes to host-pathogen interactions. Activation of the host immune system triggered NO-inducible up-regulation of MTS1338 in macrophage-engulfed mycobacteria. Constitutive overexpression of MTS1338 in cultured mycobacteria improved their survival in vitro under low pH conditions. MTS1338 up-regulation launched a spectrum of shifts in the transcriptome profile similar to those reported for M. tuberculosis adaptation to hostile intra-macrophage environment. Using the RNA-seq approach, we demonstrate that gene expression changes accompanying MTS1338 overexpression indicate reduction in translational activity and bacterial growth. These changes indicate mycobacteria entering the dormant state. Taken together, our results suggest a direct involvement of this sRNA in the interplay between mycobacteria and the host immune system during infectious process.


Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Mycobacterium tuberculosis/fisiologia , RNA Bacteriano , Transcrição Gênica , Tuberculose/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Viabilidade Microbiana , Óxido Nítrico Sintase Tipo II/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-28792118

RESUMO

Bacterial pathogens encounter several different environments during an infection, many of them possibly being detrimental. In order to sense its surroundings and adjust the gene expression accordingly, different regulatory schemes are undertaken. With these, the bacterium appropriately can differentiate between various environmental cues to express the correct virulence factor at the appropriate time and place. An attractive regulator device is RNA, which has an outstanding ability to alter its structure in response to external stimuli, such as metabolite concentration or alterations in temperature, to control its downstream gene expression. This review will describe the function of riboswitches and thermometers, with a particular emphasis on regulatory RNAs being important for bacterial pathogenicity. WIREs RNA 2017, 8:e1429. doi: 10.1002/wrna.1429 For further resources related to this article, please visit the WIREs website.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/metabolismo , RNA Bacteriano/metabolismo , Transdução de Sinais , Bactérias/genética , Bactérias/patogenicidade , Infecções Bacterianas/genética , RNA Bacteriano/genética
9.
PLoS One ; 8(9): e74209, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24066122

RESUMO

Deep sequencing was implemented to study the transcriptional landscape of Mycobacterium avium. High-resolution transcriptome analysis identified the transcription start points for 652 genes. One third of these genes represented leaderless transcripts, whereas the rest of the transcripts had 5' UTRs with the mean length of 83 nt. In addition, the 5' UTRs of 6 genes contained SAM-IV and Ykok types of riboswitches. 87 antisense RNAs and 10 intergenic small RNAs were mapped. 6 intergenic small RNAs, including 4.5S RNA and rnpB, were transcribed at extremely high levels. Although several intergenic sRNAs are conserved in M. avium and M. tuberculosis, both of these species have unique intergenic sRNAs. Moreover, we demonstrated that even conserved small RNAs are regulated differently in these species. Different sets of intergenic sRNAs may underlie differences in physiology between conditionally pathogenic M. avium and highly specialized pathogen M. tuberculosis.


Assuntos
Mycobacterium avium/genética , Transcriptoma/genética , Regulação Bacteriana da Expressão Gênica , RNA Antissenso/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA