Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Mol Pharmacol ; 104(6): 275-286, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37678938

RESUMO

Type 2 ryanodine receptor (RyR2) is a Ca2+ release channel on the endoplasmic (ER)/sarcoplasmic reticulum that plays a central role in the excitation-contraction coupling in the heart. Hyperactivity of RyR2 has been linked to ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia and heart failure, where spontaneous Ca2+ release via hyperactivated RyR2 depolarizes diastolic membrane potential to induce triggered activity. In such cases, drugs that suppress RyR2 activity are expected to prevent the arrhythmias, but there is no clinically available RyR2 inhibitors at present. In this study, we searched for RyR2 inhibitors from a well-characterized compound library using a recently developed ER Ca2+-based assay, where the inhibition of RyR2 activity was detected by the increase in ER Ca2+ signals from R-CEPIA1er, a genetically encoded ER Ca2+ indicator, in RyR2-expressing HEK293 cells. By screening 1535 compounds in the library, we identified three compounds (chloroxylenol, methyl orsellinate, and riluzole) that greatly increased the ER Ca2+ signal. All of the three compounds suppressed spontaneous Ca2+ oscillations in RyR2-expressing HEK293 cells and correspondingly reduced the Ca2+-dependent [3H]ryanodine binding activity. In cardiomyocytes from RyR2-mutant mice, the three compounds effectively suppressed abnormal Ca2+ waves without substantial effects on the action-potential-induced Ca2+ transients. These results confirm that ER Ca2+-based screening is useful for identifying modulators of ER Ca2+ release channels and suggest that RyR2 inhibitors have potential to be developed as a new category of antiarrhythmic drugs. SIGNIFICANCE STATEMENT: We successfully identified three compounds having RyR2 inhibitory action from a well-characterized compound library using an endoplasmic reticulum Ca2+-based assay, and demonstrated that these compounds suppressed arrhythmogenic Ca2+ wave generation without substantially affecting physiological action-potential induced Ca2+ transients in cardiomyocytes. This study will facilitate the development of RyR2-specific inhibitors as a potential new class of drugs for life-threatening arrhythmias induced by hyperactivation of RyR2.


Assuntos
Miócitos Cardíacos , Canal de Liberação de Cálcio do Receptor de Rianodina , Humanos , Camundongos , Animais , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Células HEK293 , Retículo Endoplasmático/metabolismo , Arritmias Cardíacas/metabolismo , Retículo Sarcoplasmático , Sinalização do Cálcio , Cálcio/metabolismo , Mutação
2.
J Physiol ; 598(9): 1671-1681, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825213

RESUMO

Astrocytes generate robust intracellular Ca2+ concentration changes (Ca2+ signals), which are assumed to regulate astrocytic functions that play crucial roles in the regulation of brain functions. One frequently used strategy for exploring the role of astrocytic Ca2+ signalling is the use of mice deficient in the type 2 inositol 1,4,5-trisphosphate receptor (IP3 R2). These IP3 R2-knockout (KO) mice are reportedly devoid of Ca2+ mobilization from the endoplasmic reticulum (ER) in astrocytes. However, they have shown no functional deficits in several studies, causing a heated debate as to the functional relevance of ER-mediated Ca2+ signalling in astrocytes. Recently, the assumption that Ca2+ mobilization from the ER is absent in IP3 R2-KO astrocytes has been re-evaluated using intraorganellar Ca2+ imaging techniques. The new results indicated that IP3 R2-independent Ca2+ release may generate Ca2+ nanodomains around the ER, which may help explain the absence of functional deficits in IP3 R2-KO mice.


Assuntos
Astrócitos , Sinalização do Cálcio , Animais , Astrócitos/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Knockout
3.
Biochem Biophys Res Commun ; 522(4): 1003-1008, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31812243

RESUMO

Astrocytes regulate various brain functions, for which Ca2+ release from the endoplasmic reticulum (ER) often play crucial roles. Because astrocytic ER Ca2+ release is robust and frequent, the ER Ca2+ refilling mechanism should be critical for ongoing Ca2+ signaling in astrocytes. In this study, we focused on the putative functional significance of store-operated Ca2+ entry (SOCE) in ER Ca2+ refilling. We expressed the ER luminal Ca2+ indicator G-CEPIA1er in astrocytes in acute cortical slices to directly monitor the decrease and recovery of ER Ca2+ concentration upon spontaneous or norepinephrine-induced Ca2+ release. Inhibition of SOCE significantly slowed the recovery of ER Ca2+ concentration after Ca2+ release in astrocytes. This delayed recovery resulted in a prolonged decrease in the ER Ca2+ content in astrocytes with periodic spontaneous Ca2+ release, followed by the attenuation of cytosolic Ca2+ responses upon Ca2+ release. Therefore, our results provide direct evidence for the physiological significance of SOCE in ER Ca2+ refilling after ER Ca2+ release.


Assuntos
Astrócitos/metabolismo , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Córtex Cerebral/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Norepinefrina/farmacologia
4.
Glia ; 67(1): 113-124, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30306640

RESUMO

Accumulating evidence indicates that astrocytes are actively involved in the physiological and pathophysiological functions of the brain. Intracellular Ca2+ signaling, especially Ca2+ release from the endoplasmic reticulum (ER), is considered to be crucial for the regulation of astrocytic functions. Mice with genetic deletion of inositol 1,4,5-trisphosphate receptor type 2 (IP3 R2) are reportedly devoid of astrocytic Ca2+ signaling, and thus widely used to explore the roles of Ca2+ signaling in astrocytic functions. While functional deficits in IP3 R2-knockout (KO) mice have been found in some reports, no functional deficit was observed in others. Thus, there remains a controversy regarding the functional significance of astrocytic Ca2+ signaling. To address this controversy, we re-evaluated the assumption that Ca2+ release from the ER is abolished in IP3 R2-KO astrocytes using a highly sensitive imaging technique. We expressed the ER luminal Ca2+ indicator G-CEPIA1er in cortical and hippocampal astrocytes to directly visualize spontaneous and stimulus-induced Ca2+ release from the ER. We found attenuated but significant Ca2+ release in response to application of norepinephrine to IP3 R2-KO astrocytes. This IP3 R2-independent Ca2+ release induced only minimal cytosolic Ca2+ transients but induced robust Ca2+ increases in mitochondria that are frequently in close contact with the ER. These results indicate that ER Ca2+ release is retained and is sufficient to increase the Ca2+ concentration in close proximity to the ER in IP3 R2-KO astrocytes.


Assuntos
Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/deficiência , Animais , Astrócitos/química , Retículo Endoplasmático/química , Hipocampo/química , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/análise , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Mol Pharmacol ; 94(1): 722-730, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29674523

RESUMO

Genetic mutations in ryanodine receptors (RyRs), Ca2+-release channels in the sarcoplasmic reticulum essential for muscle contractions, cause various skeletal muscle and cardiac diseases. Because the main underlying mechanism of the pathogenesis is overactive Ca2+ release by gain-of-function of the RyR channel, inhibition of RyRs is expected to be a promising treatment of these diseases. Here, to identify inhibitors specific to skeletal muscle type 1 RyR (RyR1), we developed a novel high-throughput screening (HTS) platform using time-lapse fluorescence measurement of Ca2+ concentrations in the endoplasmic reticulum (ER) ([Ca2+]ER). Because expression of RyR1 carrying disease-associated mutation reduces [Ca2+]ER in HEK293 cells through Ca2+ leakage from RyR1 channels, specific drugs that inhibit RyR1 will increase [Ca2+]ER by preventing such Ca2+ leakage. RyR1 carrying the R2163C mutation and R-CEPIA1er, a genetically encoded ER Ca2+ indicator, were stably expressed in HEK293 cells, and time-lapse fluorescence was measured using a fluorometer. False positives were effectively excluded by using cells expressing wild-type (WT) RyR1. By screening 1535 compounds in a library of well characterized drugs, we successfully identified four compounds that significantly increased [Ca2+]ER They include dantrolene, a known RyR1 inhibitor, and three structurally different compounds: oxolinic acid, 9-aminoacridine, and alexidine. All the hit compounds, except for oxolinic acid, inhibited [3H]ryanodine binding of WT and mutant RyR1. Interestingly, they showed different dose dependencies and isoform specificities. The highly quantitative nature and good correlation with the channel activity validated this HTS platform by [Ca2+]ER measurement to explore drugs for RyR-related diseases.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Dantroleno/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Células HEK293 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Contração Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mutação/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/metabolismo
6.
Cell Mol Life Sci ; 74(5): 827-835, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27638763

RESUMO

Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.


Assuntos
Axônios/metabolismo , Mitocôndrias/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia
7.
Biophys J ; 111(6): 1119-1131, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27477268

RESUMO

Optical Ca(2+) indicators are powerful tools for investigating intracellular Ca(2+) signals in living cells. Although a variety of Ca(2+) indicators have been developed, deciphering the physiological functions and spatiotemporal dynamics of Ca(2+) in intracellular organelles remains challenging. Genetically encoded Ca(2+) indicators (GECIs) using fluorescent proteins are promising tools for organellar Ca(2+) imaging, and much effort has been devoted to their development. In this review, we first discuss the key points of organellar Ca(2+) imaging and summarize the requirements for optimal organellar Ca(2+) indicators. Then, we highlight some of the recent advances in the engineering of fluorescent GECIs targeted to specific organelles. Finally, we discuss the limitations of currently available GECIs and the requirements for advancing the research on intraorganellar Ca(2+) signaling.


Assuntos
Sinalização do Cálcio , Proteínas Luminescentes/genética , Organelas , Imagens com Corantes Sensíveis à Voltagem , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Sinalização do Cálcio/fisiologia , Humanos , Proteínas Luminescentes/metabolismo , Organelas/metabolismo
8.
J Neurosci ; 35(48): 15837-46, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26631466

RESUMO

The endoplasmic reticulum (ER) plays crucial roles in intracellular Ca(2+) signaling, serving as both a source and sink of Ca(2+), and regulating a variety of physiological and pathophysiological events in neurons in the brain. However, spatiotemporal Ca(2+) dynamics within the ER in central neurons remain to be characterized. In this study, we visualized synaptic activity-dependent ER Ca(2+) dynamics in mouse cerebellar Purkinje cells (PCs) using an ER-targeted genetically encoded Ca(2+) indicator, G-CEPIA1er. We used brief parallel fiber stimulation to induce a local decrease in the ER luminal Ca(2+) concentration ([Ca(2+)]ER) in dendrites and spines. In this experimental system, the recovery of [Ca(2+)]ER takes several seconds, and recovery half-time depends on the extent of ER Ca(2+) depletion. By combining imaging analysis and numerical simulation, we show that the intraluminal diffusion of Ca(2+), rather than Ca(2+) reuptake, is the dominant mechanism for the replenishment of the local [Ca(2+)]ER depletion immediately following the stimulation. In spines, the ER filled almost simultaneously with parent dendrites, suggesting that the ER within the spine neck does not represent a significant barrier to Ca(2+) diffusion. Furthermore, we found that repetitive climbing fiber stimulation, which induces cytosolic Ca(2+) spikes in PCs, cumulatively increased [Ca(2+)]ER. These results indicate that the neuronal ER functions both as an intracellular tunnel to redistribute stored Ca(2+) within the neurons, and as a leaky integrator of Ca(2+) spike-inducing synaptic inputs.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Cerebelo/citologia , Retículo Endoplasmático/metabolismo , Células de Purkinje/ultraestrutura , Sinapses/fisiologia , Animais , Linhagem Celular Transformada , Cricetinae , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/ultraestrutura , Antagonistas de Aminoácidos Excitatórios/farmacologia , Técnicas In Vitro , Substâncias Luminescentes/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Células de Purkinje/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/ultraestrutura , Transdução Genética , Transfecção
9.
Hum Mutat ; 37(11): 1231-1241, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27586648

RESUMO

Type 1 ryanodine receptor (RYR1) is a Ca2+ release channel in the sarcoplasmic reticulum of skeletal muscle and is mutated in some muscle diseases, including malignant hyperthermia (MH) and central core disease (CCD). Over 200 mutations associated with these diseases have been identified, and most mutations accelerate Ca2+ -induced Ca2+ release (CICR), resulting in abnormal Ca2+ homeostasis in skeletal muscle. However, it remains largely unknown how specific mutations cause different phenotypes. In this study, we investigated the CICR activity of 14 mutations at 10 different positions in the central region of RYR1 (10 MH and four MH/CCD mutations) using a heterologous expression system in HEK293 cells. In live-cell Ca2+ imaging, the mutant channels exhibited an enhanced sensitivity to caffeine, a reduced endoplasmic reticulum Ca2+ content, and an increased resting cytoplasmic Ca2+ level. The three parameters for CICR (Ca2+ sensitivity for activation, Ca2+ sensitivity for inactivation, and attainable maximum activity, i.e., gain) were obtained by [3 H]ryanodine binding and fitting analysis. The mutant channels showed increased gain and Ca2+ sensitivity for activation in a site-specific manner. Genotype-phenotype correlations were explained well by the near-atomic structure of RYR1. Our data suggest that divergent CICR activity may cause various disease phenotypes by specific mutations.


Assuntos
Cálcio/metabolismo , Hipertermia Maligna/genética , Mutação , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Endoplasmático/metabolismo , Predisposição Genética para Doença , Células HEK293 , Humanos , Hipertermia Maligna/metabolismo , Modelos Moleculares , Miopatia da Parte Central/metabolismo , Estrutura Secundária de Proteína , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo
10.
Eur J Neurosci ; 44(3): 2004-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27225340

RESUMO

Sensory experience-dependent plasticity in the somatosensory cortex is a fundamental mechanism of adaptation to the changing environment not only early in the development but also in adolescence and adulthood. Although the mechanisms underlying experience-dependent plasticity during early development have been well documented, the corresponding understanding in the mature cortex is less complete. Here, we investigated the mechanism underlying whisker deprivation-induced synaptic plasticity in the barrel cortex in adolescent mice. Layer 4 (L4) to L2/3 excitatory synapses play a crucial role for whisker experience-dependent plasticity in rodent barrel cortex and whisker deprivation is known to depress synaptic strength at L4-L2/3 synapses in adolescent and adult animals. We found that whisker deprivation for 5 days or longer decreased the presynaptic glutamate release probability at L4-L2/3 synapses in the barrel cortex in adolescent mice. This whisker deprivation-induced depression was restored by daily administration of a positive allosteric modulator of the type 5 metabotropic glutamate receptor (mGluR5). On the other hand, the administration of mGluR5 antagonists reproduced the effect of whisker deprivation in whisker-intact mice. Furthermore, chronic and selective suppression of inositol 1,4,5-trisphosphate (IP3 ) signaling in postsynaptic L2/3 neurons decreased the presynaptic release probability at L4-L2/3 synapses. These findings represent a previously unidentified mechanism of cortical plasticity, namely that whisker experience-dependent mGluR5-IP3 signaling in the postsynaptic neurons maintains presynaptic function in the adolescent barrel cortex.


Assuntos
Plasticidade Neuronal , Receptores de Glutamato Metabotrópico/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Vibrissas/fisiologia , Animais , Ácido Glutâmico/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiologia , Transmissão Sináptica , Vibrissas/crescimento & desenvolvimento , Vibrissas/metabolismo
11.
EMBO J ; 31(2): 417-28, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22036948

RESUMO

Mobilization of intracellular Ca(2+) stores regulates a multitude of cellular functions, but the role of intracellular Ca(2+) release via the ryanodine receptor (RyR) in the brain remains incompletely understood. We found that nitric oxide (NO) directly activates RyRs, which induce Ca(2+) release from intracellular stores of central neurons, and thereby promote prolonged Ca(2+) signalling in the brain. Reversible S-nitrosylation of type 1 RyR (RyR1) triggers this Ca(2+) release. NO-induced Ca(2+) release (NICR) is evoked by type 1 NO synthase-dependent NO production during neural firing, and is essential for cerebellar synaptic plasticity. NO production has also been implicated in pathological conditions including ischaemic brain injury, and our results suggest that NICR is involved in NO-induced neuronal cell death. These findings suggest that NICR via RyR1 plays a regulatory role in the physiological and pathophysiological functions of the brain.


Assuntos
Sinalização do Cálcio/fisiologia , Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Óxido Nítrico/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Animais , Apoptose/efeitos dos fármacos , Cerebelo/citologia , Córtex Cerebral/citologia , Células HEK293 , Humanos , Técnicas In Vitro , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Óxido Nítrico Sintase Tipo I/deficiência , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/fisiologia , Técnicas de Patch-Clamp , Proteínas Recombinantes de Fusão/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
12.
Proc Natl Acad Sci U S A ; 110(28): 11612-7, 2013 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-23798419

RESUMO

Brain injury induces phenotypic changes in astrocytes, known as reactive astrogliosis, which may influence neuronal survival. Here we show that brain injury induces inositol 1,4,5-trisphosphate (IP3)-dependent Ca(2+) signaling in astrocytes, and that the Ca(2+) signaling is required for astrogliosis. We found that type 2 IP3 receptor knockout (IP3R2KO) mice deficient in astrocytic Ca(2+) signaling have impaired reactive astrogliosis and increased injury-associated neuronal death. We identified N-cadherin and pumilio 2 (Pum2) as downstream signaling molecules, and found that brain injury induces up-regulation of N-cadherin around the injured site. This effect is mediated by Ca(2+)-dependent down-regulation of Pum2, which in turn attenuates Pum2-dependent translational repression of N-cadherin. Furthermore, we show that astrocyte-specific knockout of N-cadherin results in impairment of astrogliosis and neuroprotection. Thus, astrocytic Ca(2+) signaling and the downstream function of N-cadherin play indispensable roles in the cellular responses to brain injury. These findings define a previously unreported signaling axis required for reactive astrogliosis and neuroprotection following brain injury.


Assuntos
Astrócitos/patologia , Lesões Encefálicas/prevenção & controle , Caderinas/fisiologia , Cálcio/metabolismo , Regulação para Cima/fisiologia , Animais , Astrócitos/metabolismo , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Camundongos , Camundongos Knockout , Transdução de Sinais
13.
Arthritis Rheum ; 65(2): 429-35, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23124878

RESUMO

OBJECTIVE: To investigate the underlying mechanisms of action and functional relevance of ß-catenin in chondrocytes, by examining the role of ß-catenin as a novel protein that interacts with the intracellular C-terminal portion of the parathyroid hormone (PTH)/PTH-related protein (PTHrP) receptor type 1 (PTHR-1). METHODS: The ß-catenin-PTHR-1 binding region was determined with deletion and mutagenesis analyses of the PTHR1 C-terminus, using a mammalian two-hybrid assay. Physical interactions between these 2 molecules were examined with an in situ proximity ligation assay and immunostaining. To assess the effects of gain- and loss-of-function of ß-catenin, transfection experiments were performed to induce overexpression of the constitutively active form of ß-catenin (ca-ß-catenin) and to block ß-catenin activity with small interfering RNA, in cells cotransfected with either wild-type PTHR1 or mutant forms (lacking binding to ß-catenin). Activation of the G protein α subunits G(αs) and G(αq) in the cells was determined by measurement of the intracellular cAMP accumulation and intracellular Ca(2+) concentration, while activation of canonical Wnt pathways was assessed using a TOPflash reporter assay. RESULTS: In differentiated chondrocytes, ß-catenin physically interacted and colocalized with the cell membrane-specific region of PTHR-1 (584-589). Binding of ß-catenin to PTHR-1 caused suppression of the G(αs)/cAMP pathway and enhancement of the G(αq)/Ca(2+) pathway, without affecting the canonical Wnt pathway. Inhibition of Col10a1 messenger RNA (mRNA) expression by PTH was restored by overexpression of ca-ß-catenin, even after blockade of the canonical Wnt pathway, and Col10a1 mRNA expression was further decreased by knockout of ß-catenin (via the Cre recombinase) in chondrocytes from ß-catenin-floxed mice. Mutagenesis analyses to block the binding of ß-catenin to PTHR1 caused an inhibition of chondrocyte hypertrophy markers. CONCLUSION: ß-catenin binds to the PTHR-1 C-tail and switches the downstream signaling pathway from G(αs)/cAMP to G(αq)/Ca(2+), which is a possible mechanism by which chondrocyte hypertrophy may be regulated through the PTH/PTHrP signal independent of the canonical Wnt pathway.


Assuntos
Cálcio/metabolismo , Condrócitos/metabolismo , Hormônio Paratireóideo/farmacologia , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Transdução de Sinais/fisiologia , beta Catenina/metabolismo , Crescimento Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , AMP Cíclico/metabolismo , Células HEK293 , Células HeLa , Humanos , Receptor Tipo 1 de Hormônio Paratireóideo/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , Via de Sinalização Wnt/fisiologia , beta Catenina/genética
14.
Nat Genet ; 37(2): 187-92, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15665827

RESUMO

Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems.


Assuntos
Ritmo Circadiano/genética , Transcrição Gênica , Animais , Células Cultivadas , Biologia Computacional , Proteínas de Ligação a DNA/genética , Fatores de Ligação G-Box , Regulação da Expressão Gênica , Genes Reguladores , Genes erbA , Genes rev , Ratos , Transativadores/genética , Fatores de Transcrição/genética
15.
Proc Natl Acad Sci U S A ; 107(14): 6526-31, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308566

RESUMO

Glutamate is the major neurotransmitter in the brain, mediating point-to-point transmission across the synaptic cleft in excitatory synapses. Using a glutamate imaging method with fluorescent indicators, we show that synaptic activity generates extrasynaptic glutamate dynamics in the vicinity of active synapses. These glutamate dynamics had magnitudes and durations sufficient to activate extrasynaptic glutamate receptors in brain slices. We also observed crosstalk between synapses--i.e., summation of glutamate released from neighboring synapses. Furthermore, we successfully observed that sensory input from the extremities induced extrasynaptic glutamate dynamics within the appropriate sensory area of the cerebral cortex in vivo. Thus, the present study clarifies the spatiotemporal features of extrasynaptic glutamate dynamics, and opens up an avenue to directly visualizing synaptic activity in live animals.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Ácido Glutâmico/análise , Sinapses/química , Animais , Espaço Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Imunoeletrônica , Ratos , Ratos Sprague-Dawley , Sinapses/metabolismo
16.
Nat Genet ; 36(2): 190-6, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14704669

RESUMO

RNA interference (RNAi) induced by small interfering (siRNA) or short hairpin RNA (shRNA) is an important research approach in mammalian genetics. Here we describe a technology called enzymatic production of RNAi library (EPRIL) by which cDNAs are converted by a sequence of enzymatic treatments into an RNAi library consisting of a vast array of different shRNA expression constructs. We applied EPRIL to a single cDNA source and prepared an RNAi library consisting of shRNA constructs with various RNAi efficiencies. High-throughput screening allowed us to rapidly identify the best shRNA constructs from the library. We also describe a new selection scheme using the thymidine kinase gene for obtaining efficient shRNA constructs. Furthermore, we show that EPRIL can be applied to constructing an RNAi library from a cDNA library, providing a basis for future whole-genome phenotypic screening of genes.


Assuntos
DNA Complementar/fisiologia , Biblioteca Gênica , Interferência de RNA/fisiologia , RNA Interferente Pequeno/fisiologia , Proteínas de Ligação ao Cálcio , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I/metabolismo , Genes Reporter , Vetores Genéticos , Humanos , Células Jurkat , Proteínas dos Microfilamentos , Plasmídeos
17.
J Gen Physiol ; 154(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35446340

RESUMO

Type 2 ryanodine receptor (RYR2) is a cardiac Ca2+ release channel in the ER. Mutations in RYR2 are linked to catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is associated with enhanced spontaneous Ca2+ release, which tends to occur when [Ca2+]ER reaches a threshold. Mutations lower the threshold [Ca2+]ER by increasing luminal Ca2+ sensitivity or enhancing cytosolic [Ca2+] ([Ca2+]cyt)-dependent activity. Here, to establish the mechanism relating the change in [Ca2+]cyt-dependent activity of RYR2 and the threshold [Ca2+]ER, we carried out cell-based experiments and in silico simulations. We expressed WT and CPVT-linked mutant RYR2s in HEK293 cells and measured [Ca2+]cyt and [Ca2+]ER using fluorescent Ca2+ indicators. CPVT RYR2 cells showed higher oscillation frequency and lower threshold [Ca2+]ER than WT cells. The [Ca2+]cyt-dependent activity at resting [Ca2+]cyt, Arest, was greater in CPVT mutants than in WT, and we found an inverse correlation between threshold [Ca2+]ER and Arest. In addition, lowering RYR2 expression increased the threshold [Ca2+]ER and a product of Arest, and the relative expression level for each mutant correlated with threshold [Ca2+]ER, suggesting that the threshold [Ca2+]ER depends on the net Ca2+ release rate via RYR2. Modeling reproduced Ca2+ oscillations with [Ca2+]cyt and [Ca2+]ER changes in WT and CPVT cells. Interestingly, the [Ca2+]cyt-dependent activity of specific mutations correlated with the age of disease onset in patients carrying them. Our data suggest that the reduction in threshold [Ca2+]ER for spontaneous Ca2+ release by CPVT mutation is explained by enhanced [Ca2+]cyt-dependent activity without requiring modulation of the [Ca2+]ER sensitivity of RYR2.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Taquicardia Ventricular , Cálcio/metabolismo , Células HEK293 , Humanos , Mutação , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
18.
Sci Adv ; 8(39): eabp8701, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179023

RESUMO

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.


Assuntos
Cálcio , Neurônios Dopaminérgicos , Trifosfato de Adenosina/metabolismo , Ácido Aspártico , Cálcio/metabolismo , Neurônios Dopaminérgicos/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Mitocôndrias/metabolismo , Oxidantes , Substância Negra/metabolismo
19.
J Physiol ; 589(Pt 3): 481-8, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21115644

RESUMO

Glutamate is the major excitatory neurotransmitter in the central nervous system. Although glutamate mediates synaptically confined point-to-point transmission, it has been suggested that under certain conditions glutamate may escape from the synaptic cleft (glutamate spillover), accumulate in the extrasynaptic space, and mediate volume transmission to regulate important brain functions. However, the inability to directly measure glutamate dynamics around active synapses has limited our understanding of glutamatergic volume transmission. The recent development of a family of fluorescent glutamate indicators has enabled the visualization of extrasynaptic glutamate dynamics in brain tissues. In this topical review, we examine glutamate as a volume transmitter based on novel results of glutamate imaging in the brain.


Assuntos
Técnicas Biossensoriais/métodos , Ácido Glutâmico/análise , Ácido Glutâmico/metabolismo , Transmissão Sináptica/fisiologia , Animais , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia
20.
Proc Natl Acad Sci U S A ; 105(1): 28-32, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18172220

RESUMO

Chromophore-assisted light inactivation is a promising technique to inactivate selected proteins with high spatial and temporal resolution in living cells, but its use has been limited because of the lack of a methodology to prevent nonspecific photodamage in the cell owing to reactive oxygen species generated by the photosensitizer. Here we present a design strategy for photosensitizers with an environment-sensitive off/on switch for singlet oxygen ((1)O(2)) generation, which is switched on by binding to the target, to improve the specificity of protein photoinactivation. (1)O(2) generation in the unbound state is quenched by photoinduced electron transfer, whereas (1)O(2) generation can occur in the hydrophobic environment provided by the target protein, after specific binding. Inositol 1,4,5-trisphosphate receptor, which has been suggested to have a hydrophobic pocket around the ligand binding site, was specifically inactivated by an environment-sensitive photosensitizer-conjugated inositol 1,4,5-trisphosphate receptor ligand without (1)O(2) generation in the cytosol of the target cells, despite light illumination, demonstrating the potential of environment-sensitive photosensitizers to allow high-resolution control of generation of reactive oxygen species in the cell.


Assuntos
Corantes Fluorescentes/farmacologia , Fotoquímica/métodos , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete , Animais , Boro/química , Compostos de Boro/farmacologia , Linhagem Celular , Galinhas , Citosol/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Luz , Modelos Biológicos , Oxigênio/química , Porfobilinogênio/análogos & derivados , Porfobilinogênio/química , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA