Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nat Methods ; 19(5): 620-627, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35545713

RESUMO

Animal behavior emerges from an interaction between neural network dynamics, musculoskeletal properties and the physical environment. Accessing and understanding the interplay between these elements requires the development of integrative and morphologically realistic neuromechanical simulations. Here we present NeuroMechFly, a data-driven model of the widely studied organism, Drosophila melanogaster. NeuroMechFly combines four independent computational modules: a physics-based simulation environment, a biomechanical exoskeleton, muscle models and neural network controllers. To enable use cases, we first define the minimum degrees of freedom of the leg from real three-dimensional kinematic measurements during walking and grooming. Then, we show how, by replaying these behaviors in the simulator, one can predict otherwise unmeasured torques and contact forces. Finally, we leverage NeuroMechFly's full neuromechanical capacity to discover neural networks and muscle parameters that drive locomotor gaits optimized for speed and stability. Thus, NeuroMechFly can increase our understanding of how behaviors emerge from interactions between complex neuromechanical systems and their physical surroundings.


Assuntos
Drosophila melanogaster , Marcha , Animais , Fenômenos Biomecânicos , Simulação por Computador , Marcha/fisiologia , Modelos Biológicos , Caminhada/fisiologia
2.
PLoS Comput Biol ; 20(1): e1011008, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38166093

RESUMO

Complex interactions between brain regions and the spinal cord (SC) govern body motion, which is ultimately driven by muscle activation. Motor planning or learning are mainly conducted at higher brain regions, whilst the SC acts as a brain-muscle gateway and as a motor control centre providing fast reflexes and muscle activity regulation. Thus, higher brain areas need to cope with the SC as an inherent and evolutionary older part of the body dynamics. Here, we address the question of how SC dynamics affects motor learning within the cerebellum; in particular, does the SC facilitate cerebellar motor learning or constitute a biological constraint? We provide an exploratory framework by integrating biologically plausible cerebellar and SC computational models in a musculoskeletal upper limb control loop. The cerebellar model, equipped with the main form of cerebellar plasticity, provides motor adaptation; whilst the SC model implements stretch reflex and reciprocal inhibition between antagonist muscles. The resulting spino-cerebellar model is tested performing a set of upper limb motor tasks, including external perturbation studies. A cerebellar model, lacking the implemented SC model and directly controlling the simulated muscles, was also tested in the same. The performances of the spino-cerebellar and cerebellar models were then compared, thus allowing directly addressing the SC influence on cerebellar motor adaptation and learning, and on handling external motor perturbations. Performance was assessed in both joint and muscle space, and compared with kinematic and EMG recordings from healthy participants. The differences in cerebellar synaptic adaptation between both models were also studied. We conclude that the SC facilitates cerebellar motor learning; when the SC circuits are in the loop, faster convergence in motor learning is achieved with simpler cerebellar synaptic weight distributions. The SC is also found to improve robustness against external perturbations, by better reproducing and modulating muscle cocontraction patterns.


Assuntos
Cerebelo , Medula Espinal , Humanos , Cerebelo/fisiologia , Medula Espinal/fisiologia , Simulação por Computador , Extremidade Superior , Aprendizagem/fisiologia
3.
Nature ; 565(7739): 351-355, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651613

RESUMO

Reconstructing the locomotion of extinct vertebrates offers insights into their palaeobiology and helps to conceptualize major transitions in vertebrate evolution1-4. However, estimating the locomotor behaviour of a fossil species remains a challenge because of the limited information preserved and the lack of a direct correspondence between form and function5,6. The evolution of advanced locomotion on land-that is, locomotion that is more erect, balanced and mechanically power-saving than is assumed of anamniote early tetrapods-has previously been linked to the terrestrialization and diversification of amniote lineages7. To our knowledge, no reconstructions of the locomotor characteristics of stem amniotes based on multiple quantitative methods have previously been attempted: previous methods have relied on anatomical features alone, ambiguous locomotor information preserved in ichnofossils or unspecific modelling of locomotor dynamics. Here we quantitatively examine plausible gaits of the stem amniote Orobates pabsti, a species that is known from a complete body fossil preserved in association with trackways8. We reconstruct likely gaits that match the footprints, and investigate whether Orobates exhibited locomotor characteristics that have previously been linked to the diversification of crown amniotes. Our integrative methodology uses constraints derived from biomechanically relevant metrics, which also apply to extant tetrapods. The framework uses in vivo assessment of locomotor mechanics in four extant species to guide an anatomically informed kinematic simulation of Orobates, as well as dynamic simulations and robotics to filter the parameter space for plausible gaits. The approach was validated using two extant species that have different morphologies, gaits and footprints. Our metrics indicate that Orobates exhibited more advanced locomotion than has previously been assumed for earlier tetrapods7,9, which suggests that advanced terrestrial locomotion preceded the diversification of crown amniotes. We provide an accompanying website for the exploration of the filters that constrain our simulations, which will allow revision of our approach using new data, assumptions or methods.


Assuntos
Fósseis , Locomoção , Filogenia , Vertebrados/fisiologia , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/fisiologia , Animais , Tamanho Corporal , Feminino , Iguanas/anatomia & histologia , Iguanas/fisiologia , Urodelos/anatomia & histologia , Urodelos/fisiologia , Vertebrados/anatomia & histologia
4.
J Exp Biol ; 226(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37565347

RESUMO

Animal locomotion is the result of complex and multi-layered interactions between the nervous system, the musculo-skeletal system and the environment. Decoding the underlying mechanisms requires an integrative approach. Comparative experimental biology has allowed researchers to study the underlying components and some of their interactions across diverse animals. These studies have shown that locomotor neural circuits are distributed in the spinal cord, the midbrain and higher brain regions in vertebrates. The spinal cord plays a key role in locomotor control because it contains central pattern generators (CPGs) - systems of coupled neuronal oscillators that provide coordinated rhythmic control of muscle activation that can be viewed as feedforward controllers - and multiple reflex loops that provide feedback mechanisms. These circuits are activated and modulated by descending pathways from the brain. The relative contributions of CPGs, feedback loops and descending modulation, and how these vary between species and locomotor conditions, remain poorly understood. Robots and neuromechanical simulations can complement experimental approaches by testing specific hypotheses and performing what-if scenarios. This Review will give an overview of key knowledge gained from comparative vertebrate experiments, and insights obtained from neuromechanical simulations and robotic approaches. We suggest that the roles of CPGs, feedback loops and descending modulation vary among animals depending on body size, intrinsic mechanical stability, time required to reach locomotor maturity and speed effects. We also hypothesize that distal joints rely more on feedback control compared with proximal joints. Finally, we highlight important opportunities to address fundamental biological questions through continued collaboration between experimentalists and engineers.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Animais , Retroalimentação , Locomoção/fisiologia , Medula Espinal/fisiologia , Vertebrados
5.
J Physiol ; 600(11): 2691-2712, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35442531

RESUMO

This study investigates the pathological toe and heel gaits seen in human locomotion using neuromusculoskeletal modelling and simulation. In particular, it aims to investigate potential cause-effect relationships between biomechanical or neural impairments and pathological gaits. Toe and heel gaits are commonly present in spinal cord injury, stroke and cerebral palsy. Toe walking is mainly attributed to spasticity and contracture at plantar flexor muscles, whereas heel walking can be attributed to muscle weakness of biomechanical or neural origin. To investigate the effect of these impairments on gait, this study focuses on the soleus and gastrocnemius muscles as they contribute to ankle plantarflexion. We built a reflex circuit model based on previous work by Geyer and Herr with additional pathways affecting the plantar flexor muscles. The SCONE software, which provides optimisation tools for 2D neuromechanical simulation of human locomotion, is used to optimise the corresponding reflex parameters and simulate healthy gait. We then modelled various bilateral plantar flexor biomechanical and neural impairments, and individually introduced them in the healthy model. We characterised the resulting simulated gaits as pathological or not by comparing ankle kinematics and ankle moment with the healthy optimised gait based on metrics used in clinical studies. Our simulations suggest that toe walking can be generated by hyperreflexia, whereas muscle and neural weaknesses partially induce heel gait. Thus, this 'what if' approach is deemed of great interest as it allows investigation of the effect of various impairments on gait and suggests an important contribution of active reflex mechanisms to pathological toe gait. KEY POINTS: Pathological toe and heel gaits are commonly present in various conditions such as spinal cord injury, stroke and cerebral palsy. These conditions present various neural and biomechanical impairments, but the cause-effect relationships between these impairments and pathological gaits are difficult to establish clinically. Based on neuromechanical simulation, this study focuses on the plantar flexor muscles and builds a new reflex circuit controller to model and evaluate the potential effect of both neural and biomechanical impairments on gait. Our results suggest an important contribution of active reflex mechanisms to pathological toe gait. This 'what if' based on neuromechanical modelling is thus deemed of great interest to target potential causes of pathological gait.


Assuntos
Marcha , Modelos Biológicos , Fenômenos Biomecânicos , Paralisia Cerebral , Marcha/fisiologia , Calcanhar , Humanos , Músculo Esquelético/fisiologia , Traumatismos da Medula Espinal , Acidente Vascular Cerebral , Dedos do Pé , Caminhada/fisiologia
6.
PLoS Comput Biol ; 17(5): e1008594, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34010288

RESUMO

The central nervous system of humans and other animals modulates spinal cord activity to achieve several locomotion behaviors. Previous neuromechanical models investigated the modulation of human gait changing selected parameters belonging to CPGs (Central Pattern Generators) feedforward oscillatory structures or to feedback reflex circuits. CPG-based models could replicate slow and fast walking by changing only the oscillation's properties. On the other hand, reflex-based models could achieve different behaviors through optimizations of large dimensional parameter spaces. However, they could not effectively identify individual key reflex parameters responsible for gait characteristics' modulation. This study investigates which reflex parameters modulate the gait characteristics through neuromechanical simulations. A recently developed reflex-based model is used to perform optimizations with different target behaviors on speed, step length, and step duration to analyze the correlation between reflex parameters and their influence on these gait characteristics. We identified nine key parameters that may affect the target speed ranging from slow to fast walking (0.48 and 1.71 m/s) as well as a large range of step lengths (0.43 and 0.88 m) and step duration (0.51, 0.98 s). The findings show that specific reflexes during stance significantly affect step length regulation, mainly given by positive force feedback of the ankle plantarflexors' group. On the other hand, stretch reflexes active during swing of iliopsoas and gluteus maximus regulate all the gait characteristics under analysis. Additionally, the results show that the hamstrings' group's stretch reflex during the landing phase is responsible for modulating the step length and step duration. Additional validation studies in simulations demonstrated that the modulation of identified reflexes is sufficient to regulate the investigated gait characteristics. Thus, this study provides an overview of possible reflexes involved in modulating speed, step length, and step duration of human gaits.


Assuntos
Marcha/fisiologia , Locomoção/fisiologia , Modelos Neurológicos , Fenômenos Biomecânicos , Biologia Computacional , Simulação por Computador , Humanos , Modelos Anatômicos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Sistema Musculoesquelético/anatomia & histologia , Sistema Musculoesquelético/inervação , Desempenho Psicomotor/fisiologia , Reflexo de Estiramento/fisiologia , Caminhada/fisiologia
7.
J Neuroeng Rehabil ; 18(1): 119, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315499

RESUMO

BACKGROUND: Many lower-limb exoskeletons have been developed to assist gait, exhibiting a large range of control methods. The goal of this paper is to review and classify these control strategies, that determine how these devices interact with the user. METHODS: In addition to covering the recent publications on the control of lower-limb exoskeletons for gait assistance, an effort has been made to review the controllers independently of the hardware and implementation aspects. The common 3-level structure (high, middle, and low levels) is first used to separate the continuous behavior (mid-level) from the implementation of position/torque control (low-level) and the detection of the terrain or user's intention (high-level). Within these levels, different approaches (functional units) have been identified and combined to describe each considered controller. RESULTS: 291 references have been considered and sorted by the proposed classification. The methods identified in the high-level are manual user input, brain interfaces, or automatic mode detection based on the terrain or user's movements. In the mid-level, the synchronization is most often based on manual triggers by the user, discrete events (followed by state machines or time-based progression), or continuous estimations using state variables. The desired action is determined based on position/torque profiles, model-based calculations, or other custom functions of the sensory signals. In the low-level, position or torque controllers are used to carry out the desired actions. In addition to a more detailed description of these methods, the variants of implementation within each one are also compared and discussed in the paper. CONCLUSIONS: By listing and comparing the features of the reviewed controllers, this work can help in understanding the numerous techniques found in the literature. The main identified trends are the use of pre-defined trajectories for full-mobilization and event-triggered (or adaptive-frequency-oscillator-synchronized) torque profiles for partial assistance. More recently, advanced methods to adapt the position/torque profiles online and automatically detect terrains or locomotion modes have become more common, but these are largely still limited to laboratory settings. An analysis of the possible underlying reasons of the identified trends is also carried out and opportunities for further studies are discussed.


Assuntos
Exoesqueleto Energizado , Marcha , Humanos , Locomoção , Extremidade Inferior , Torque
8.
Sensors (Basel) ; 21(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924403

RESUMO

Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait analysis is key to the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This article presents a systematic review of wearable sensors and techniques used in real-time gait analysis, and their application to pathological gait. From four major scientific databases, we identified 1262 articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors and the shank and foot are the preferred placements. Insole pressure sensors are the most common sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on threshold or peak detection are the most widely used gait detection method. The heterogeneity of evaluation criteria prevented quantitative performance comparison of all methods. Although most studies predicted that the proposed methods would work on pathological gait, less than one third were validated on such data. Clinical applications of gait detection algorithms were considered, and we recommend a combination of IMU and rule-based methods as an optimal solution.


Assuntos
Atividades Cotidianas , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Marcha , Análise da Marcha , Humanos
9.
Biol Cybern ; 113(1-2): 1-6, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30701314

RESUMO

From September-December 2017, the Mathematical Biosciences Institute at Ohio State University hosted a series of workshops on control theory in biology and medicine, including workshops on control and modulation of neuronal and motor systems, control of cellular and molecular systems, control of disease / personalized medicine across heterogeneous populations, and sensorimotor control of animals and robots. This special issue presents tutorials and research articles by several of the participants in the MBI workshops.


Assuntos
Biologia , Medicina , Modelos Biológicos , Modelos Teóricos , Animais , Simulação por Computador , Humanos , Biologia de Sistemas
11.
Nat Commun ; 15(1): 3073, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594288

RESUMO

Quadruped animals are capable of seamless transitions between different gaits. While energy efficiency appears to be one of the reasons for changing gaits, other determinant factors likely play a role too, including terrain properties. In this article, we propose that viability, i.e., the avoidance of falls, represents an important criterion for gait transitions. We investigate the emergence of gait transitions through the interaction between supraspinal drive (brain), the central pattern generator in the spinal cord, the body, and exteroceptive sensing by leveraging deep reinforcement learning and robotics tools. Consistent with quadruped animal data, we show that the walk-trot gait transition for quadruped robots on flat terrain improves both viability and energy efficiency. Furthermore, we investigate the effects of discrete terrain (i.e., crossing successive gaps) on imposing gait transitions, and find the emergence of trot-pronk transitions to avoid non-viable states. Viability is the only improved factor after gait transitions on both flat and discrete gap terrains, suggesting that viability could be a primary and universal objective of gait transitions, while other criteria are secondary objectives and/or a consequence of viability. Moreover, our experiments demonstrate state-of-the-art quadruped robot agility in challenging scenarios.


Assuntos
Marcha , Robótica , Animais , Caminhada , Medula Espinal , Encéfalo , Locomoção
12.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38293071

RESUMO

The study of animal locomotion and neuromechanical control offers valuable insights for advancing research in neuroscience, biomechanics, and robotics. We have developed FARMS (Framework for Animal and Robot Modeling and Simulation), an open-source, interdisciplinary framework, designed to facilitate access to neuromechanical simulations for modeling, simulation, and analysis of animal locomotion and bio-inspired robotic systems. By providing an accessible and user-friendly platform, FARMS aims to lower the barriers for researchers to explore the complex interactions between the nervous system, musculoskeletal structures, and their environment. Integrating the MuJoCo physics engine in a modular manner, FARMS enables realistic simulations and fosters collaboration among neuroscientists, biologists, and roboticists. FARMS has already been extensively used to study locomotion in animals such as mice, drosophila, fish, salamanders, and centipedes, serving as a platform to investigate the role of central pattern generators and sensory feedback. This article provides an overview of the FARMS framework, discusses its interdisciplinary approach, showcases its versatility through specific case studies, and highlights its effectiveness in advancing our understanding of locomotion. In particular, we show how we used FARMS to study amphibious locomotion by presenting experimental demonstrations across morphologies and environments based on neural controllers with central pattern generators and sensory feedback circuits models. Overall, the goal of FARMS is to contribute to a deeper understanding of animal locomotion, the development of innovative bio-inspired robotic systems, and promote accessibility in neuromechanical research.

13.
Front Bioeng Biotechnol ; 12: 1324587, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532879

RESUMO

Background: Efficient gait assistance by augmentative exoskeletons depends on reliable control strategies. While numerous control methods and their effects on the metabolic cost of walking have been explored in the literature, the use of different exoskeletons and dissimilar protocols limit direct comparisons. In this article, we present and compare two controllers for hip exoskeletons with different synchronization paradigms. Methods: The implicit-synchronization-based approach, termed the Simple Reflex Controller (SRC), determines the assistance as a function of the relative loading of the feet, resulting in an emerging torque profile continuously assisting extension during stance and flexion during swing. On the other hand, the Hip-Phase-based Torque profile controller (HPT) uses explicit synchronization and estimates the gait cycle percentage based on the hip angle, applying a predefined torque profile consisting of two shorter bursts of assistance during stance and swing. We tested the controllers with 23 naïve healthy participants walking on a treadmill at 4 km ⋅ h-1, without any substantial familiarization. Results: Both controllers significantly reduced the metabolic rate compared to walking with the exoskeleton in passive mode, by 18.0% (SRC, p < 0.001) and 11.6% (HPT, p < 0.001). However, only the SRC led to a significant reduction compared to walking without the exoskeleton (8.8%, p = 0.004). The SRC also provided more mechanical power and led to bigger changes in the hip joint kinematics and walking cadence. Our analysis of mechanical powers based on a whole-body analysis suggested a reduce in ankle push-off under this controller. There was a strong correlation (Pearson's r = 0.778, p < 0.001) between the metabolic savings achieved by each participant with the two controllers. Conclusion: The extended assistance duration provided by the implicitly synchronized SRC enabled greater metabolic reductions compared to the more targeted assistance of the explicitly synchronized HPT. Despite the different assistance profiles and metabolic outcomes, the correlation between the metabolic reductions with the two controllers suggests a difference in individual responsiveness to assistance, prompting more investigations to explore the person-specific factors affecting assistance receptivity.

14.
Bioinspir Biomim ; 19(4)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38626775

RESUMO

Animals have evolved highly effective locomotion capabilities in terrestrial, aerial, and aquatic environments. Over life's history, mass extinctions have wiped out unique animal species with specialized adaptations, leaving paleontologists to reconstruct their locomotion through fossil analysis. Despite advancements, little is known about how extinct megafauna, such as the Ichthyosauria one of the most successful lineages of marine reptiles, utilized their varied morphologies for swimming. Traditional robotics struggle to mimic extinct locomotion effectively, but the emerging soft robotics field offers a promising alternative to overcome this challenge. This paper aims to bridge this gap by studyingMixosauruslocomotion with soft robotics, combining material modeling and biomechanics in physical experimental validation. Combining a soft body with soft pneumatic actuators, the soft robotic platform described in this study investigates the correlation between asymmetrical fins and buoyancy by recreating the pitch torque generated by extinct swimming animals. We performed a comparative analysis of thrust and torque generated byCarthorhyncus,Utatsusaurus,Mixosaurus,Guizhouichthyosaurus, andOphthalmosaurustail fins in a flow tank. Experimental results suggest that the pitch torque on the torso generated by hypocercal fin shapes such as found in model systems ofGuizhouichthyosaurus,MixosaurusandUtatsusaurusproduce distinct ventral body pitch effects able to mitigate the animal's non-neutral buoyancy. This body pitch control effect is particularly pronounced inGuizhouichthyosaurus, which results suggest would have been able to generate high ventral pitch torque on the torso to compensate for its positive buoyancy. By contrast, homocercal fin shapes may not have been conducive for such buoyancy compensation, leaving torso pitch control to pectoral fins, for example. Across the range of the actuation frequencies of the caudal fins tested, resulted in oscillatory modes arising, which in turn can affect the for-aft thrust generated.


Assuntos
Nadadeiras de Animais , Modelos Biológicos , Robótica , Natação , Animais , Natação/fisiologia , Nadadeiras de Animais/fisiologia , Nadadeiras de Animais/anatomia & histologia , Robótica/instrumentação , Fenômenos Biomecânicos , Répteis/fisiologia , Répteis/anatomia & histologia , Fósseis , Simulação por Computador , Biomimética/métodos
15.
Neural Comput ; 25(2): 328-73, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23148415

RESUMO

Nonlinear dynamical systems have been used in many disciplines to model complex behaviors, including biological motor control, robotics, perception, economics, traffic prediction, and neuroscience. While often the unexpected emergent behavior of nonlinear systems is the focus of investigations, it is of equal importance to create goal-directed behavior (e.g., stable locomotion from a system of coupled oscillators under perceptual guidance). Modeling goal-directed behavior with nonlinear systems is, however, rather difficult due to the parameter sensitivity of these systems, their complex phase transitions in response to subtle parameter changes, and the difficulty of analyzing and predicting their long-term behavior; intuition and time-consuming parameter tuning play a major role. This letter presents and reviews dynamical movement primitives, a line of research for modeling attractor behaviors of autonomous nonlinear dynamical systems with the help of statistical learning techniques. The essence of our approach is to start with a simple dynamical system, such as a set of linear differential equations, and transform those into a weakly nonlinear system with prescribed attractor dynamics by means of a learnable autonomous forcing term. Both point attractors and limit cycle attractors of almost arbitrary complexity can be generated. We explain the design principle of our approach and evaluate its properties in several example applications in motor control and robotics.


Assuntos
Modelos Teóricos , Movimento , Robótica , Animais , Inteligência Artificial , Humanos , Dinâmica não Linear
16.
Biol Cybern ; 107(5): 565-87, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23463500

RESUMO

The evolutionary transition from water to land required new locomotor modes and corresponding adjustments of the spinal "central pattern generators" for locomotion. Salamanders resemble the first terrestrial tetrapods and represent a key animal for the study of these changes. Based on recent physiological data from salamanders, and previous work on the swimming, limbless lamprey, we present a model of the basic oscillatory network in the salamander spinal cord, the spinal segment. Model neurons are of the Hodgkin-Huxley type. Spinal hemisegments contain sparsely connected excitatory and inhibitory neuron populations, and are coupled to a contralateral hemisegment. The model yields a large range of experimental findings, especially the NMDA-induced oscillations observed in isolated axial hemisegments and segments of the salamander Pleurodeles waltlii. The model reproduces most of the effects of the blockade of AMPA synapses, glycinergic synapses, calcium-activated potassium current, persistent sodium current, and [Formula: see text]-current. Driving segments with a population of brainstem neurons yields fast oscillations in the in vivo swimming frequency range. A minimal modification to the conductances involved in burst-termination yields the slower stepping frequency range. Slow oscillators can impose their frequency on fast oscillators, as is likely the case during gait transitions from swimming to stepping. Our study shows that a lamprey-like network can potentially serve as a building block of axial and limb oscillators for swimming and stepping in salamanders.


Assuntos
Lampreias/fisiologia , Modelos Neurológicos , Urodelos/fisiologia , Animais , Evolução Biológica , Cibernética , Fenômenos Eletrofisiológicos , Canais Iônicos/fisiologia , Locomoção/fisiologia , N-Metilaspartato/fisiologia , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica
17.
Biol Cybern ; 107(5): 529-44, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23250621

RESUMO

Salamanders have captured the interest of biologists and roboticists for decades because of their ability to locomote in different environments and their resemblance to early representatives of tetrapods. In this article, we review biological and robotic studies on the kinematics (i.e., angular profiles of joints) of salamander locomotion aiming at three main goals: (i) to give a clear view of the kinematics, currently available, for each body part of the salamander while moving in different environments (i.e., terrestrial stepping, aquatic stepping, and swimming), (ii) to examine what is the status of our current knowledge and what remains unclear, and (iii) to discuss how much robotics and modeling have already contributed and will potentially contribute in the future to such studies.


Assuntos
Locomoção/fisiologia , Robótica , Urodelos/fisiologia , Animais , Fenômenos Biomecânicos , Cibernética , Extremidades/fisiologia , Modelos Biológicos , Natação/fisiologia , Urodelos/anatomia & histologia
18.
Biol Cybern ; 107(3): 309-20, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23463501

RESUMO

This manuscript proposes a method to directly transfer the features of horse walking, trotting, and galloping to a quadruped robot, with the aim of creating a much more natural (horse-like) locomotion profile. A principal component analysis on horse joint trajectories shows that walk, trot, and gallop can be described by a set of four kinematic Motion Primitives (kMPs). These kMPs are used to generate valid, stable gaits that are tested on a compliant quadruped robot. Tests on the effects of gait frequency scaling as follows: results indicate a speed optimal walking frequency around 3.4 Hz, and an optimal trotting frequency around 4 Hz. Following, a criterion to synthesize gait transitions is proposed, and the walk/trot transitions are successfully tested on the robot. The performance of the robot when the transitions are scaled in frequency is evaluated by means of roll and pitch angle phase plots.


Assuntos
Marcha/fisiologia , Movimento (Física) , Robótica , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço , Cavalos/fisiologia , Humanos , Modelos Biológicos , Análise de Componente Principal
19.
Biol Cybern ; 107(5): 545-64, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23430277

RESUMO

Vertebrate animals exhibit impressive locomotor skills. These locomotor skills are due to the complex interactions between the environment, the musculo-skeletal system and the central nervous system, in particular the spinal locomotor circuits. We are interested in decoding these interactions in the salamander, a key animal from an evolutionary point of view. It exhibits both swimming and stepping gaits and is faced with the problem of producing efficient propulsive forces using the same musculo-skeletal system in two environments with significant physical differences in density, viscosity and gravitational load. Yet its nervous system remains comparatively simple. Our approach is based on a combination of neurophysiological experiments, numerical modeling at different levels of abstraction, and robotic validation using an amphibious salamander-like robot. This article reviews the current state of our knowledge on salamander locomotion control, and presents how our approach has allowed us to obtain a first conceptual model of the salamander spinal locomotor networks. The model suggests that the salamander locomotor circuit can be seen as a lamprey-like circuit controlling axial movements of the trunk and tail, extended by specialized oscillatory centers controlling limb movements. The interplay between the two types of circuits determines the mode of locomotion under the influence of sensory feedback and descending drive, with stepping gaits at low drive, and swimming at high drive.


Assuntos
Locomoção/fisiologia , Modelos Biológicos , Robótica , Urodelos/fisiologia , Animais , Cibernética , Extremidades/fisiologia , Retroalimentação Sensorial/fisiologia , Rede Nervosa/fisiologia , Natação/fisiologia
20.
Sci Robot ; 8(78): eadg0279, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256966

RESUMO

Robotics and neuroscience are sister disciplines that both aim to understand how agile, efficient, and robust locomotion can be achieved in autonomous agents. Robotics has already benefitted from neuromechanical principles discovered by investigating animals. These include the use of high-level commands to control low-level central pattern generator-like controllers, which, in turn, are informed by sensory feedback. Reciprocally, neuroscience has benefited from tools and intuitions in robotics to reveal how embodiment, physical interactions with the environment, and sensory feedback help sculpt animal behavior. We illustrate and discuss exemplar studies of this dialog between robotics and neuroscience. We also reveal how the increasing biorealism of simulations and robots is driving these two disciplines together, forging an integrative science of autonomous behavioral control with many exciting future opportunities.


Assuntos
Neurociências , Robótica , Animais , Locomoção , Retroalimentação Sensorial , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA