Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Virol ; 98(4): e0013224, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38511932

RESUMO

Heartland virus (HRTV) is an emerging tick-borne bandavirus that causes a febrile illness of varying severity in humans, with cases reported in eastern and midwestern regions of the United States. No vaccines or approved therapies are available to prevent or treat HRTV disease. Here, we describe the genetic changes, natural history of disease, and pathogenesis of a mouse-adapted HRTV (MA-HRTV) that is uniformly lethal in 7- to 8-week-old AG129 mice at low challenge doses. We used this model to assess the efficacy of the ribonucleoside analog, 4'-fluorouridine (EIDD-2749), and showed that once-daily oral treatment with 3 mg/kg of drug, initiated after the onset of disease, protects mice against lethal MA-HRTV challenge and reduces viral loads in blood and tissues. Our findings provide insights into HRTV virulence and pathogenesis and support further development of EIDD-2749 as a therapeutic intervention for HRTV disease. IMPORTANCE: More than 60 cases of HRTV disease spanning 14 states have been reported to the United States Centers for Disease Control and Prevention. The expanding range of the Lone Star tick that transmits HRTV, the growing population of at-risk persons living in geographic areas where the tick is abundant, and the lack of antiviral treatments or vaccines raise significant public health concerns. Here, we report the development of a new small-animal model of lethal HRTV disease to gain insight into HRTV pathogenesis and the application of this model for the preclinical development of a promising new antiviral drug candidate, EIDD-2749. Our findings shed light on how the virus causes disease and support the continued development of EIDD-2749 as a therapeutic for severe cases of HRTV infection.


Assuntos
Infecções por Bunyaviridae , Bunyaviridae , Nucleotídeos de Uracila , Animais , Humanos , Camundongos , Infecções por Bunyaviridae/tratamento farmacológico , Carrapatos , Estados Unidos , Nucleotídeos de Uracila/uso terapêutico
2.
J Infect Dis ; 228(5): 604-614, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36869692

RESUMO

The common marmoset (Callithrix jacchus) is increasingly recognized as an ideal nonhuman primate (NHP) at high biocontainment due to its smaller size and relative ease of handling. Here, we evaluated the susceptibility and pathogenesis of Nipah virus Bangladesh strain (NiVB) infection in marmosets at biosafety level 4. Infection via the intranasal and intratracheal route resulted in fatal disease in all 4 infected marmosets. Three developed pulmonary edema and hemorrhage as well as multifocal hemorrhagic lymphadenopathy, while 1 recapitulated neurologic clinical manifestations and cardiomyopathy on gross pathology. Organ-specific innate and inflammatory responses were characterized by RNA sequencing in 6 different tissues from infected and control marmosets. Notably, a unique transcriptome was revealed in the brainstem of the marmoset exhibiting neurological signs. Our results provide a more comprehensive understanding of NiV pathogenesis in an accessible and novel NHP model, closely reflecting clinical disease as observed in NiV patients.


Assuntos
Infecções por Henipavirus , Vírus Nipah , Edema Pulmonar , Animais , Callithrix , Bangladesh
3.
J Virol ; 95(7)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33441343

RESUMO

Rift Valley fever (RVF), which has been designated as a priority disease by the World Health Organization (WHO), is one of the most pathogenic zoonotic diseases endemic to Africa and the Arabian Peninsula. Human vaccine preparation requires the use of appropriate cell substrates to support efficient production of seed vaccine with minimum concerns of tumorigenicity, oncogenicity, or adventitious agents. Vero cells, which were derived from the African green monkey kidney, represent one of the few mammalian cell lines that are used for vaccine manufacturing. This study demonstrated the rescue of RVFV MP-12 infectious clones in Vero cells using plasmids encoding the Macaca mulatta RNA polymerase I promoter. Although Vero cells demonstrated an approximately 20% transfection efficiency, only 0.5% of transfected cells showed the replication of viral genomic RNA, supported by the co-expression of RVFV N and L helper proteins. RVFV Infectious clones were detectable in the culture supernatants approximately 4 to 9 days posttransfection reaching maximum titers during the following 5 days. The re-amplification of rescued recombinant MP-12 (rMP-12) in Vero cells led to an increase in the genetic subpopulations, affecting the viral phenotype via amino acid substitutions in the NSs gene, whereas the rMP-12 re-amplified in human diploid MRC-5 cells did not increase viral sub-populations with NSs gene mutations. The strategy in which RVFV infectious clones are rescued in Vero cells and then subsequently amplified in MRC-5 cells will support the vaccine seed lot systems of live-attenuated recombinant RVFV vaccines for human use.IMPORTANCE RVF is a mosquito-transmitted, viral, zoonotic disease endemic to Africa and the Arabian Peninsula, and its spread outside of the endemic area will potentially cause devastating economic damages and serious public health problems. Different from classical live-attenuated vaccines, live-attenuated recombinant vaccines allow rational improvement of vaccine production efficiency, protective efficacy, and vaccine safety via the genetic engineering. This study demonstrated the generation of infectious Rift Valley fever (RVF) virus from cloned cDNA using Vero cells, which are one of a few mammalian cell lines used for vaccine manufacturing. Subsequent re-amplification of virus clones in Vero cells unexpectedly increased viral subpopulations encoding unfavorable mutations, whereas viral re-amplification in human diploid MRC-5 cells could minimize the emergence of such mutants. Rescue of recombinant RVFV from Vero cells and re-amplification in MRC-5 cells will support the vaccine seed lot systems of live-attenuated recombinant RVFV vaccines for human use.

4.
J Infect Dis ; 218(10): 1602-1610, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29912426

RESUMO

Background: Nipah virus (NiV) is a paramyxovirus (genus Henipavirus) that can cause severe respiratory illness and encephalitis in humans. Transmission occurs through consumption of NiV-contaminated foods, and contact with NiV-infected animals or human body fluids. However, it is unclear whether aerosols derived from aforesaid sources or others also contribute to transmission, and current knowledge on NiV-induced pathogenicity after small-particle aerosol exposure is still limited. Methods: Infectivity, pathogenicity, and real-time dissemination of aerosolized NiV in Syrian hamsters was evaluated using NiV-Malaysia (NiV-M) and/or its recombinant expressing firefly luciferase (rNiV-FlucNP). Results: Both viruses had an equivalent pathogenicity in hamsters, which developed respiratory and neurological symptoms of disease, similar to using intranasal route, with no direct correlations to the dose. We showed that virus replication was predominantly initiated in the lower respiratory tract and, although delayed, also intensely in the oronasal cavity and possibly the brain, with gradual increase of signal in these regions until at least day 5-6 postinfection. Conclusion: Hamsters infected with small-particle aerosolized NiV undergo similar clinical manifestations of the disease as previously described using liquid inoculum, and exhibit histopathological lesions consistent with NiV patient reports. NiV droplets could therefore play a role in transmission by close contact.


Assuntos
Aerossóis/administração & dosagem , Infecções por Henipavirus , Vírus Nipah/patogenicidade , Administração por Inalação , Animais , Cricetinae , Modelos Animais de Doenças , Infecções por Henipavirus/diagnóstico por imagem , Infecções por Henipavirus/patologia , Infecções por Henipavirus/transmissão , Infecções por Henipavirus/virologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Pulmão/diagnóstico por imagem , Pulmão/patologia , Pulmão/virologia , Mesocricetus , Imagem Óptica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
5.
J Virol ; 91(15)2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28539439

RESUMO

Nipah virus (NiV) is a zoonotic emerging paramyxovirus that can cause fatal respiratory illness or encephalitis in humans. Despite many efforts, the molecular mechanisms of NiV-induced acute lung injury (ALI) remain unclear. We previously showed that NiV replicates to high titers in human lung grafts in NOD-SCID/γ mice, resulting in a robust inflammatory response. Interestingly, these mice can undergo human immune system reconstitution by the bone marrow, liver, and thymus (BLT) reconstitution method, in addition to lung tissue engraftment, giving altogether a realistic model to study human respiratory viral infections. Here, we characterized NiV Bangladesh strain (NiV-B) infection of human lung grafts from human immune system-reconstituted mice in order to identify the overall effect of immune cells on NiV pathogenesis of the lung. We show that NiV-B replicated to high titers in human lung grafts and caused similar cytopathic effects irrespective of the presence of human leukocytes in mice. However, the human immune system interfered with virus spread across lung grafts, responded to infection by leukocyte migration to small airways and alveoli of the lung grafts, and accelerated oxidative stress in lung grafts. In addition, the presence of human leukocytes increased the expression of cytokines and chemokines that regulate inflammatory influx to sites of infection and tissue damage. These results advance our understanding of how the immune system limits NiV dissemination and contributes to ALI and inform efforts to identify therapeutic targets.IMPORTANCE Nipah virus (NiV) is an emerging paramyxovirus that can cause a lethal respiratory and neurological disease in humans. Only limited data are available on NiV pathogenesis in the human lung, and the relative contribution of the innate immune response and NiV to acute lung injury (ALI) is still unknown. Using human lung grafts in a human immune system-reconstituted mouse model, we showed that the NiV Bangladesh strain induced cytopathic lesions in lung grafts similar to those described in patients irrespective of the donor origin or the presence of leukocytes. However, the human immune system interfered with virus spread, responded to infection by leukocyte infiltration in the small airways and alveolar area, induced oxidative stress, and triggered the production of cytokines and chemokines that regulate inflammatory influx by leukocytes in response to infection. Understanding how leukocytes interact with NiV and cause ALI in human lung xenografts is crucial for identifying therapeutic targets.


Assuntos
Lesão Pulmonar Aguda/patologia , Infecções por Henipavirus/patologia , Leucócitos/imunologia , Pulmão/patologia , Vírus Nipah/crescimento & desenvolvimento , Estresse Oxidativo , Animais , Citocinas/análise , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID
6.
J Virol ; 90(7): 3735-44, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819307

RESUMO

UNLABELLED: Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by "abortion storms" in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE: Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature sensitivity (ts) of MP-12 vaccine to understand virologic characteristics. Our study revealed that MP-12 vaccine contains ts mutations independently in the L, M, and S segments and that MP-12 displays a restrictive replication at 38°C.


Assuntos
Vírus da Febre do Vale do Rift/fisiologia , Vírus da Febre do Vale do Rift/efeitos da radiação , Vacinas Virais/genética , Replicação Viral/efeitos da radiação , Animais , Linhagem Celular , Análise Mutacional de DNA , Humanos , Mutação de Sentido Incorreto , Vírus da Febre do Vale do Rift/genética , Temperatura , Vacinas Atenuadas/genética
7.
J Gen Virol ; 97(4): 839-843, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26781134

RESUMO

Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.


Assuntos
Genes Reporter , Engenharia Genética/métodos , Infecções por Henipavirus/genética , Vírus Nipah/genética , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Animais , Feminino , Regulação da Expressão Gênica , Infecções por Henipavirus/mortalidade , Infecções por Henipavirus/patologia , Infecções por Henipavirus/virologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mesocricetus , Dados de Sequência Molecular , Mutagênese Insercional , Vírus Nipah/patogenicidade , Faloidina/genética , Faloidina/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Análise de Sobrevida , Transcrição Gênica , Replicação Viral/genética , Proteína Vermelha Fluorescente
8.
J Virol ; 89(14): 7262-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948740

RESUMO

UNLABELLED: Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE: Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other countries. Vaccination is considered an effective way to prevent the disease, and the only available veterinary RVF vaccine in the United States is a live-attenuated MP-12 vaccine, which is conditionally licensed. Strain MP-12 is different from its parental pathogenic RVFV strain, strain ZH548, because of the presence of 23 mutations. This study determined the role of individual mutations in the attenuation of the MP-12 strain. We found that full attenuation of MP-12 occurs by a combination of multiple mutations. Our findings indicate that a single reversion mutation will less likely cause a major reversion to virulence of the MP-12 vaccine.


Assuntos
Febre do Vale de Rift/patologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/fisiologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Camundongos , Mutação de Sentido Incorreto , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidade , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Virulência
9.
Virol J ; 13: 118, 2016 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-27368371

RESUMO

Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-ß promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.


Assuntos
Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/isolamento & purificação , Proteínas não Estruturais Virais/metabolismo , Animais , Apoptose , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Febre do Vale de Rift/genética , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/fisiopatologia , Vírus da Febre do Vale do Rift/classificação , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/genética
10.
J Virol ; 87(7): 3710-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23325696

RESUMO

Toscana virus (TOSV), which is transmitted by Phlebotomus spp. sandflies, is a major etiologic agent of aseptic meningitis and encephalitis in the Mediterranean. Like other members of the genus Phlebovirus of the family Bunyaviridae, TOSV encodes a nonstructural protein (NSs) in its small RNA segment. Although the NSs of Rift Valley fever virus (RVFV) has been identified as an important virulence factor, which suppresses host general transcription, inhibits transcription from the beta interferon promoter, and promotes the proteasomal degradation of double-stranded RNA-dependent protein kinase (PKR), little is known about the functions of NSs proteins encoded by less-pathogenic members of this genus. In this study we report that TOSV is able to downregulate PKR with similar efficiency as RVFV, while infection with the other phleboviruses-i.e., Punta Toro virus, sandfly fever Sicilian virus, or Frijoles virus-has no effect on cellular PKR levels. In contrast to RVFV, however, cellular transcription remains unaffected during TOSV infection. TOSV NSs protein promotes the proteasome-dependent downregulation of PKR and is able to interact with kinase-inactive PKR in infected cells.


Assuntos
Proteólise , Vírus da Febre do Flebótomo Napolitano/genética , Proteínas não Estruturais Virais/metabolismo , eIF-2 Quinase/metabolismo , Animais , Western Blotting , Chlorocebus aethiops , Química Click , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Imunoprecipitação , Plasmídeos/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Especificidade da Espécie , Células Vero
11.
Viruses ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38257788

RESUMO

Rift Valley fever is a zoonotic viral disease transmitted by mosquitoes, impacting both humans and livestock. Currently, there are no approved vaccines or antiviral treatments for humans. This study aimed to evaluate the in vitro efficacy of chemical compounds targeting the Gc fusion mechanism. These compounds were identified through virtual screening of millions of commercially available small molecules using a structure-based artificial intelligence bioactivity predictor. In our experiments, a pretreatment with small molecule compounds revealed that 3 out of 94 selected compounds effectively inhibited the replication of the Rift Valley fever virus MP-12 strain in Vero cells. As anticipated, these compounds did not impede viral RNA replication when administered three hours after infection. However, significant inhibition of viral RNA replication occurred upon viral entry when cells were pretreated with these small molecules. Furthermore, these compounds exhibited significant inhibition against Arumowot virus, another phlebovirus, while showing no antiviral effects on tick-borne bandaviruses. Our study validates AI-based virtual high throughput screening as a rational approach for identifying effective antiviral candidates for Rift Valley fever virus and other bunyaviruses.


Assuntos
Phlebovirus , Vírus da Febre do Vale do Rift , Chlorocebus aethiops , Humanos , Animais , Inteligência Artificial , Células Vero , Computadores , RNA Viral , Antivirais/farmacologia
12.
J Gen Virol ; 94(Pt 7): 1441-1450, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23515022

RESUMO

Rift Valley fever is a mosquito-borne zoonotic disease endemic to sub-Saharan Africa. Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) causes high rates of abortion and fetal malformation in pregnant ruminants, and haemorrhagic fever, neurological disorders or blindness in humans. The MP-12 strain is a highly efficacious and safe live-attenuated vaccine candidate for both humans and ruminants. However, MP-12 lacks a marker to differentiate infected from vaccinated animals. In this study, we originally aimed to characterize the efficacy of a recombinant RVFV MP-12 strain encoding Toscana virus (TOSV) NSs gene in place of MP-12 NSs (rMP12-TOSNSs). TOSV NSs promotes the degradation of dsRNA-dependent protein kinase (PKR) and inhibits interferon-ß gene up-regulation without suppressing host general transcription. Unexpectedly, rMP12-TOSNSs increased death in vaccinated outbred mice and inbred BALB/c or C57BL/6 mice. Immunohistochemistry showed diffusely positive viral antigens in the thalamus, hypothalamus and brainstem, including the medulla. No viral antigens were detected in spleen or liver, which is similar to the antigen distribution of moribund mice infected with MP-12. These results suggest that rMP12-TOSNSs retains neuroinvasiveness in mice. Our findings demonstrate that rMP12-TOSNSs causes neuroinvasion without any hepatic disease and will be useful for studying the neuroinvasion mechanism of RVFV and TOSV.


Assuntos
Encéfalo/virologia , Doenças do Sistema Nervoso/virologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Flebótomo Napolitano/genética , Vírus da Febre do Flebótomo Napolitano/patogenicidade , Vacinas Atenuadas/efeitos adversos , Proteínas não Estruturais Virais/metabolismo , Vacinas Virais/efeitos adversos , Animais , Linhagem Celular , Chlorocebus aethiops , Feminino , Humanos , Imunoglobulina G/sangue , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Flebótomo Napolitano/imunologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Células Vero , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
13.
J Virol ; 86(24): 13566-75, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23035230

RESUMO

Rift Valley fever virus strain MP-12 was generated by serial plaque passages of parental strain ZH548 12 times in MRC-5 cells in the presence of a chemical mutagen, 5-fluorouracil. As a result, MP-12 encoded 4, 9, and 10 mutations in the S, M, and L segments, respectively. Among them, mutations in the M and L segments were responsible for attenuation, while the MP-12 S segment still encoded a virulent phenotype. We performed high-throughput sequencing of MP-12 vaccine, ZH548, and recombinant MP-12 (rMP-12) viruses. We found that rMP-12 contains very low numbers of viral subpopulations, while MP-12 and ZH548 contain 2 to 4 times more viral genetic subpopulations than rMP-12. MP-12 genetic subpopulations did not encode the ZH548 sequence at the 23 MP-12 consensus mutations. On the other hand, 4 and 2 mutations in M and L segments of MP-12 were found in ZH548 subpopulations. Thus, those 6 mutations were no longer MP-12-specific mutations. ZH548 encoded several unique mutations compared to other Egyptian strains, i.e., strains ZH501, ZH1776, and ZS6365. ZH548 subpopulations shared nucleotides at the mutation site common with those in the Egyptian strains, while MP-12 subpopulations did not share those nucleotides. Thus, MP-12 retains unique genetic subpopulations and has no evidence of reversion to the ZH548 sequence in the subpopulations. This study provides the first information regarding the genetic subpopulations of RVFV and shows the genetic stability of the MP-12 vaccine manufactured in MRC-5 cells.


Assuntos
Recombinação Genética , Vírus da Febre do Vale do Rift/genética , Animais , Linhagem Celular , Cricetinae , Genes Virais , Mutação , Reação em Cadeia da Polimerase , Vírus da Febre do Vale do Rift/classificação
14.
J Virol ; 86(23): 12954-70, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22993156

RESUMO

Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.


Assuntos
Cavéolas/metabolismo , Endocitose/fisiologia , Vírus da Febre do Vale do Rift/fisiologia , Internalização do Vírus , Animais , Western Blotting , Cavéolas/fisiologia , Caveolinas/genética , Chlorocebus aethiops , Citometria de Fluxo , Proteínas de Fluorescência Verde , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Interferência de RNA , RNA Interferente Pequeno/genética
15.
J Virol ; 86(14): 7650-61, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22573861

RESUMO

Rift Valley fever virus (RVFV), belonging to the genus Phlebovirus, family Bunyaviridae, is endemic to sub-Saharan Africa and causes a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. MP-12 is the only RVFV strain excluded from the select-agent rule and handled at a biosafety level 2 (BSL2) laboratory. MP-12 encodes a functional major virulence factor, the NSs protein, which contributes to its residual virulence in pregnant ewes. We found that 100% of mice subcutaneously vaccinated with recombinant MP-12 (rMP12)-murine PKRN167 (mPKRN167), which encodes a dominant-negative form of mouse double-stranded RNA (dsRNA)-dependent protein kinase (PKR) in place of NSs, were protected from wild-type (wt) RVFV challenge, while 72% of mice vaccinated with MP-12 were protected after challenge. rMP12-mPKRN167 induced alpha interferon (IFN-α) in sera, accumulated RVFV antigens in dendritic cells at the local draining lymph nodes, and developed high levels of neutralizing antibodies, while parental MP-12 induced neither IFN-α nor viral-antigen accumulation at the draining lymph node yet induced a high level of neutralizing antibodies. The present study suggests that the expression of a dominant-negative PKR increases the immunogenicity and efficacy of live-attenuated RVFV vaccine, which will lead to rational design of safe and highly immunogenic RVFV vaccines for livestock and humans.


Assuntos
Vírus da Febre do Vale do Rift/imunologia , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , eIF-2 Quinase/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Quimiocinas/sangue , Chlorocebus aethiops , Cricetinae , Células Dendríticas/imunologia , Interferon-alfa/sangue , Interferon gama/sangue , Interleucina-17/sangue , Interleucina-5/sangue , Camundongos , Mutação , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Células Vero , eIF-2 Quinase/antagonistas & inibidores
16.
NPJ Vaccines ; 8(1): 171, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925544

RESUMO

Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.

17.
Vaccines (Basel) ; 11(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36992291

RESUMO

Live-attenuated Rift Valley fever (RVF) vaccines transiently replicate in the vaccinated host, thereby effectively initiating an innate and adaptive immune response. Rift Valley fever virus (RVFV)-specific neutralizing antibodies are considered the main correlate of protection. Vaccination with classical live-attenuated RVF vaccines during gestation in livestock has been associated with fetal malformations, stillbirths, and fetal demise. Facilitated by an increased understanding of the RVFV infection and replication cycle and availability of reverse genetics systems, novel rationally-designed live-attenuated candidate RVF vaccines with improved safety profiles have been developed. Several of these experimental vaccines are currently advancing beyond the proof-of-concept phase and are being evaluated for application in both animals and humans. We here provide perspectives on some of these next-generation live-attenuated RVF vaccines and highlight the opportunities and challenges of these approaches to improve global health.

18.
J Virol ; 85(13): 6234-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543505

RESUMO

Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) is an important emerging pathogen of humans and ruminants. Its NSs protein has previously been identified as a major virulence factor that suppresses host defense through three distinct mechanisms: it directly inhibits beta interferon (IFN-ß) promoter activity, it promotes the degradation of double-stranded RNA-dependent protein kinase (PKR), and it suppresses host transcription by disrupting the assembly of the basal transcription factor TFIIH through sequestration of its p44 subunit. Here, we report that in addition to PKR, NSs also promotes the degradation of the TFIIH subunit p62. Infection of cells with the RVFV MP-12 vaccine strain reduced p62 protein levels to below the detection limit early in the course of infection. This NSs-mediated downregulation of p62 was posttranslational, as it was unaffected by pharmacological inhibition of transcription or translation and MP-12 infection had no effect on p62 mRNA levels. Treatment of cells with proteasome inhibitors but not inhibition of lysosomal acidification or nuclear export resulted in a stabilization of p62 in the presence of NSs. Furthermore, p62 could be coprecipitated with NSs from lysates of infected cells. These data suggest that the RVFV NSs protein is able to interact with the TFIIH subunit p62 inside infected cells and promotes its degradation, which can occur directly in the nucleus.


Assuntos
Regulação para Baixo , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/metabolismo , Vírus da Febre do Vale do Rift/patogenicidade , Fator de Transcrição TFIIH/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Células Vero
19.
BMC Vet Res ; 8: 189, 2012 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23057674

RESUMO

BACKGROUND: Ebolaviruses induce lethal viral hemorrhagic fevers (VHFs) in humans and non-human primates, with the exceptions of Reston virus (RESTV), which is not pathogenic for humans. In human VHF cases, extensive analyses of the humoral immune responses in survivors and non-survivors have shown that the IgG responses to nucleoprotein (NP) and other viral proteins are associated with asymptomatic and survival outcomes, and that the neutralizing antibody responses targeting ebolaviruses glycoprotein (GP1,2) are the major indicator of protective immunity. On the other hand, the immune responses in non-human primates, especially naturally infected ones, have not yet been elucidated in detail, and the significance of the antibody responses against NP and GP1,2 in RESTV-infected cynomolgus macaques is still unclear. In this study, we analyzed the humoral immune responses of cynomolgus macaque by using serum specimens obtained from the RESTV epizootic in 1996 in the Philippines to expand our knowledge on the immune responses in naturally RESTV-infected non-human primates. RESULTS: The antibody responses were analyzed using IgG-ELISA, an indirect immunofluorescent antibody assay (IFA), and a pseudotyped VSV-based neutralizing (NT) assay. Antigen-capture (Ag)-ELISA was also performed to detect viral antigens in the serum specimens. We found that the anti-GP1,2 responses, but not the anti-NP responses, closely were correlated with the neutralization responses, as well as the clearance of viremia in the sera of the RESTV-infected cynomolgus macaques. Additionally, by analyzing the cytokine/chemokine concentrations of these serum specimens, we found high concentrations of proinflammatory cytokines/chemokines, such as IFNγ, IL8, IL-12, and MIP1α, in the convalescent phase sera. CONCLUSIONS: These results imply that both the antibody response to GP1,2 and the proinflammatory innate responses play significant roles in the recovery from RESTV infection in cynomolgus macaques.


Assuntos
Anticorpos Antivirais/sangue , Surtos de Doenças/veterinária , Ebolavirus , Macaca fascicularis , Doenças dos Macacos/imunologia , Animais , Anticorpos Neutralizantes/sangue , Antígenos Virais , Imunidade Humoral , Doenças dos Macacos/epidemiologia , Doenças dos Macacos/virologia , Filipinas/epidemiologia , Viremia
20.
NPJ Vaccines ; 7(1): 109, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131104

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonosis endemic to Africa and the Arabian Peninsula, which causes large outbreaks among humans and ruminants. Single dose vaccinations using live-attenuated RVF virus (RVFV) support effective prevention of viral spread in endemic countries. Due to the segmented nature of RVFV genomic RNA, segments of vaccine strain-derived genomic RNA could be incorporated into wild-type RVFV within co-infected mosquitoes or animals. Rationally designed vaccine candidate RVax-1 displays protective epitopes fully identical to the previously characterized MP-12 vaccine. Additionally, all genome segments of RVax-1 contribute to the attenuation phenotype, which prevents the formation of pathogenic reassortant strains. This study demonstrated that RVax-1 cannot replicate efficiently in orally fed Aedes aegypti mosquitoes, while retaining strong immunogenicity and protective efficacy in an inbred mouse model, which were indistinguishable from the MP-12 vaccine. These findings support further development of RVax-1 as the next generation MP-12-based vaccine for prevention of Rift Valley fever in humans and animals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA