Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Mol Cell Proteomics ; 21(10): 100413, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36115577

RESUMO

The assembly of proteins and peptides into amyloid fibrils is causally linked to serious disorders such as Alzheimer's disease. Multiple proteins have been shown to prevent amyloid formation in vitro and in vivo, ranging from highly specific chaperone-client pairs to completely nonspecific binding of aggregation-prone peptides. The underlying interactions remain elusive. Here, we turn to the machine learning-based structure prediction algorithm AlphaFold2 to obtain models for the nonspecific interactions of ß-lactoglobulin, transthyretin, or thioredoxin 80 with the model amyloid peptide amyloid ß and the highly specific complex between the BRICHOS chaperone domain of C-terminal region of lung surfactant protein C and its polyvaline target. Using a combination of native mass spectrometry (MS) and ion mobility MS, we show that nonspecific chaperoning is driven predominantly by hydrophobic interactions of amyloid ß with hydrophobic surfaces in ß-lactoglobulin, transthyretin, and thioredoxin 80, and in part regulated by oligomer stability. For C-terminal region of lung surfactant protein C, native MS and hydrogen-deuterium exchange MS reveal that a disordered region recognizes the polyvaline target by forming a complementary ß-strand. Hence, we show that AlphaFold2 and MS can yield atomistic models of hard-to-capture protein interactions that reveal different chaperoning mechanisms based on separate ligand properties and may provide possible clues for specific therapeutic intervention.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Humanos , Amiloide/química , Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Pré-Albumina , Deutério , Ligantes , Chaperonas Moleculares/metabolismo , Espectrometria de Massas , Aprendizado de Máquina , Tiorredoxinas , Lactoglobulinas , Proteínas Associadas a Surfactantes Pulmonares
2.
J Am Chem Soc ; 145(33): 18340-18354, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555670

RESUMO

The amyloid-ß (Aß) peptide is associated with the development of Alzheimer's disease and is known to form highly neurotoxic prefibrillar oligomeric aggregates, which are difficult to study due to their transient, low-abundance, and heterogeneous nature. To obtain high-resolution information about oligomer structure and dynamics as well as relative populations of assembly states, we here employ a combination of native ion mobility mass spectrometry and molecular dynamics simulations. We find that the formation of Aß oligomers is dependent on the presence of a specific ß-hairpin motif in the peptide sequence. Oligomers initially grow spherically but start to form extended linear aggregates at oligomeric states larger than those of the tetramer. The population of the extended oligomers could be notably increased by introducing an intramolecular disulfide bond, which prearranges the peptide in the hairpin conformation, thereby promoting oligomeric structures but preventing conversion into mature fibrils. Conversely, truncating one of the ß-strand-forming segments of Aß decreased the hairpin propensity of the peptide and thus decreased the oligomer population, removed the formation of extended oligomers entirely, and decreased the aggregation propensity of the peptide. We thus propose that the observed extended oligomer state is related to the formation of an antiparallel sheet state, which then nucleates into the amyloid state. These studies provide increased mechanistic understanding of the earliest steps in Aß aggregation and suggest that inhibition of Aß folding into the hairpin conformation could be a viable strategy for reducing the amount of toxic oligomers.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Conformação Proteica , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química
3.
J Am Chem Soc ; 144(27): 11949-11954, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35749730

RESUMO

α-Synuclein (α-Syn) is an intrinsically disordered protein which self-assembles into highly organized ß-sheet structures that accumulate in plaques in brains of Parkinson's disease patients. Oxidative stress influences α-Syn structure and self-assembly; however, the basis for this remains unclear. Here we characterize the chemical and physical effects of mild oxidation on monomeric α-Syn and its aggregation. Using a combination of biophysical methods, small-angle X-ray scattering, and native ion mobility mass spectrometry, we find that oxidation leads to formation of intramolecular dityrosine cross-linkages and a compaction of the α-Syn monomer by a factor of √2. Oxidation-induced compaction is shown to inhibit ordered self-assembly and amyloid formation by steric hindrance, suggesting an important role of mild oxidation in preventing amyloid formation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide/química , Humanos , Doença de Parkinson/metabolismo , Tirosina/análogos & derivados , Tirosina/química , alfa-Sinucleína/química
4.
J Biol Chem ; 295(24): 8135-8144, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32350108

RESUMO

A human molecular chaperone protein, DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6), efficiently inhibits amyloid aggregation. This inhibition depends on a unique motif with conserved serine and threonine (S/T) residues that have a high capacity for hydrogen bonding. Global analysis of kinetics data has previously shown that DNAJB6 especially inhibits the primary nucleation pathways. These observations indicated that DNAJB6 achieves this remarkably effective and sub-stoichiometric inhibition by interacting not with the monomeric unfolded conformations of the amyloid-ß symbol (Aß) peptide but with aggregated species. However, these pre-nucleation oligomeric aggregates are transient and difficult to study experimentally. Here, we employed a native MS-based approach to directly detect oligomeric forms of Aß formed in solution. We found that WT DNAJB6 considerably reduces the signals from the various forms of Aß (1-40) oligomers, whereas a mutational DNAJB6 variant in which the S/T residues have been substituted with alanines does not. We also detected signals that appeared to represent DNAJB6 dimers and trimers to which varying amounts of Aß are bound. These data provide direct experimental evidence that it is the oligomeric forms of Aß that are captured by DNAJB6 in a manner which depends on the S/T residues. We conclude that, in agreement with the previously observed decrease in primary nucleation rate, strong binding of Aß oligomers to DNAJB6 inhibits the formation of amyloid nuclei.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Agregados Proteicos , Sequência de Aminoácidos , Amiloide/metabolismo , Proteínas de Choque Térmico HSP40/química , Humanos , Chaperonas Moleculares/química , Proteínas do Tecido Nervoso/química , Ligação Proteica , Multimerização Proteica
5.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884793

RESUMO

Multimodal spectroscopic imaging methods such as Matrix Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI), Fourier Transform Infrared spectroscopy (FT-IR) and Raman spectroscopy were used to monitor the changes in distribution and to determine semi quantitatively selected metabolites involved in nitrogen fixation in pea root nodules. These approaches were used to evaluate the effectiveness of nitrogen fixation by pea plants treated with biofertilizer preparations containing Nod factors. To assess the effectiveness of biofertilizer, the fresh and dry masses of plants were determined. The biofertilizer was shown to be effective in enhancing the growth of the pea plants. In case of metabolic changes, the biofertilizer caused a change in the apparent distribution of the leghaemoglobin from the edges of the nodule to its centre (the active zone of nodule). Moreover, the enhanced nitrogen fixation and presumably the accelerated maturation form of the nodules were observed with the use of a biofertilizer.


Assuntos
Fixação de Nitrogênio/fisiologia , Pisum sativum/metabolismo , Rhizobium leguminosarum/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fertilizantes/microbiologia , Leghemoglobina/metabolismo , Pisum sativum/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
6.
Analyst ; 145(5): 1737-1748, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-31913371

RESUMO

Glycosylation influences the structure and functionality of glycoproteins, and is regulated by genetic and environmental factors. The types and abundance of glycans on glycoproteins can vary due to diseases such as cancer, inflammation, autoimmune and neurodegenerative disorders. Due to the crucial role glycans play in modulating protein function, glycosylation analysis could lead to the discovery of novel biomarkers and is of prime importance in controlling the quality of glycoprotein biopharmaceuticals. Here, we present a method for the identification and quantification of glycoforms directly on intact proteins, after immunoaffinity purification from biological fluids. The method was validated and applied to serum transferrin and the biopharmaceutical trastuzumab. The accuracy of the method, expressed as the relative error (RE), ranged from 2.1 (at high concentrations) to 7.9% (at low concentrations), and intra- and inter-day precision, expressed as relative standard deviation (RSD), was 3.2 and 8.2%, respectively. The sensitivity and linearity of the method were suitable for serum analysis and the LOQ was calculated to be 3.1 and 4.4 µg mL-1 for transferrin (TFN) and trastuzumab (TRA), respectively. Its application to transferrin from five healthy human serum samples yielded concentrations between 1.61 and 3.17 mg mL-1, which are in agreement with blood reference levels. In parallel, the structure of the identified glycans was determined by ion mobility spectrometry coupled with tandem mass spectrometry. No chromatographic separation was required and sample preparation was performed in a semi-automatic manner, facilitating the handling of up to 12 samples at a time. This method should be useful for clinical laboratories and for the quality control of large batches of biopharmaceuticals.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Polissacarídeos/análise , Espectrometria de Massas em Tandem/métodos , Transferrina/análise , Trastuzumab/sangue , Glicosilação , Humanos , Polissacarídeos/química , Polissacarídeos/metabolismo , Transferrina/química , Transferrina/metabolismo , Trastuzumab/química , Trastuzumab/metabolismo
7.
J Am Chem Soc ; 141(26): 10440-10450, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31141355

RESUMO

The mechanisms behind the Amyloid-ß (Aß) peptide neurotoxicity in Alzheimer's disease are intensely studied and under debate. One suggested mechanism is that the peptides assemble in biological membranes to form ß-barrel shaped oligomeric pores that induce cell leakage. Direct detection of such putative assemblies and their exact oligomeric states is however complicated by a high level of heterogeneity. The theory consequently remains controversial, and the actual formation of pore structures is disputed. We herein overcome the heterogeneity problem by employing a native mass spectrometry approach and demonstrate that Aß(1-42) peptides form coclusters with membrane mimetic detergent micelles. The coclusters are gently ionized using nanoelectrospray and transferred into the mass spectrometer where the detergent molecules are stripped away using collisional activation. We show that Aß(1-42) indeed oligomerizes over time in the micellar environment, forming hexamers with collision cross sections in agreement with a general ß-barrel structure. We also show that such oligomers are maintained and even stabilized by addition of lipids. Aß(1-40) on the other hand form significantly lower amounts of oligomers, which are also of lower oligomeric state compared to Aß(1-42) oligomers. Our results thus support the oligomeric pore hypothesis as one important cell toxicity mechanism in Alzheimer's disease. The presented native mass spectrometry approach is a promising way to study such potentially very neurotoxic species and how they could be stabilized or destabilized by molecules of cellular or therapeutic relevance.


Assuntos
Peptídeos beta-Amiloides/síntese química , Fragmentos de Peptídeos/síntese química , Peptídeos beta-Amiloides/química , Humanos , Espectrometria de Mobilidade Iônica , Espectrometria de Massas , Micelas , Modelos Moleculares , Fragmentos de Peptídeos/química , Proteínas Recombinantes/síntese química , Proteínas Recombinantes/química
8.
PLoS Pathog ; 13(4): e1006251, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28384279

RESUMO

The development of meningococcal disease, caused by the human pathogen Neisseria meningitidis, is preceded by the colonization of the epithelial layer in the nasopharynx. After initial adhesion to host cells meningococci form aggregates, through pilus-pilus interactions, termed microcolonies from which the bacteria later detach. Dispersal from microcolonies enables access to new colonization sites and facilitates the crossing of the cell barrier; however, this process is poorly understood. In this study, we used live-cell imaging to investigate the process of N. meningitidis microcolony dispersal. We show that direct contact with host cells is not required for microcolony dispersal, instead accumulation of a host-derived effector molecule induces microcolony dispersal. By using a host-cell free approach, we demonstrated that lactate, secreted from host cells, initiate rapid dispersal of microcolonies. Interestingly, metabolic utilization of lactate by the bacteria was not required for induction of dispersal, suggesting that lactate plays a role as a signaling molecule. Furthermore, Neisseria gonorrhoeae microcolony dispersal could also be induced by lactate. These findings reveal a role of host-secreted lactate in microcolony dispersal and virulence of pathogenic Neisseria.


Assuntos
Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Ácido Láctico/metabolismo , Infecções Meningocócicas/metabolismo , Neisseria meningitidis/patogenicidade , Fímbrias Bacterianas/microbiologia , Humanos , Neisseria gonorrhoeae/patogenicidade , Virulência/fisiologia
9.
Rapid Commun Mass Spectrom ; 32(12): 942-950, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-29520903

RESUMO

RATIONALE: Fatty acids are enriched in the ocean surface microlayer (SML) and have as a consequence been detected worldwide in sea spray aerosols. In searching for a relationship between the properties of the atmospheric aerosol and its ability to form cloud condensation nuclei and to promote cloud droplet formation over remote marine areas, the role of surface active fatty acids sourced from the SML is of interest to be investigated. Here we present a fast method for profiling of major fatty acids in SML samples collected in the high Arctic (89°N, 1°W) in the summer of 2001. METHODS: Ultrahigh-performance liquid chromatography (UHPLC)/travelling-wave ion mobility spectrometry (TWIMS)/time-of-flight (TOF) mass spectrometry (MS) for profiling was evaluated and compared with UHPLC/TOFMS. Except for evaporation and centrifugation, no sample preparation was necessary prior to the analysis. RESULTS: TOFMS data on accurate mass, isotopic ratios and fragmentation patterns enabled identification of the fatty acids. The TWIMS dimension added to the selectivity by extensive reduction of the noise level and the entire UHPLC/TWIMS/TOFMS method provided a fast profiling of the acids, ranging from C8 to C24 . Hexadecanoic and octadecanoic acids were shown to yield the highest signals among the FAs detected in a high Arctic SML sample, followed by the unsaturated octadecenoic and octadecadienoic acids. The predominance of signal from even-numbered carbon chains indicates a mainly biogenic origin of the detected FAs. CONCLUSIONS: This study presents a fast alternative method for screening and profiling of FAs, which has the advantage of not requiring any complicated sample preparation, thus limiting the loss of analytes. Almost no manual handling, together with the very small sample volumes needed, is certainly beneficial for the determination of trace amounts and should open up the field of applications to also include atmospheric aerosol and fog.

10.
J Paediatr Child Health ; 54(9): 997-1004, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29779250

RESUMO

AIM: To evaluate the intake of a soy protein-based supplement (SPS) and its effects on the sexual maturation and nutritional status of prepubertal children who consumed it for a year. METHODS: Healthy children (n = 51) were recruited and randomly assigned to consume the lunch fruit juice with (n = 29) or without (n = 22) addition of 45 g of a commercial soy protein-based supplement (SPS) over 12 months. Nutritional assessment including anthropometry (bodyweight, height, triceps skinfold thickness, mid-upper arm circumference), body mass index (BMI), upper arm muscle area, arm muscle circumference, upper arm area, upper arm fat area data were derived from measures using usual procedures; age and gender-specific percentiles were used as reference. Sexual maturation was measured by Tanner stage. Isoflavones were quantified using liquid chromatography and tandem mass spectrometry. RESULTS: Height, BMI/age, weight/age and height/age were significantly different (P < 0.05) at 12 months between girls in the control and intervention groups. Statistically significant differences between groups by gender (P < 0.05) were found in boys in the control group for the triceps skinfold thickness and fat area. Nutritional status was adequate according to the World Health Organization parameters. On average, 0.130 mg/kg body weight/day of isoflavones were consumed by children, which did not show significant differences in their sexual maturation. CONCLUSION: Consumption of SPS for 12 months did not affect sexual maturation or the onset of puberty in prepubertal boys and girls; however, it may have induced an increase in height, BMI/age, height/age and weight/age of the girls, associated with variations in fat-free mass.


Assuntos
Suplementos Nutricionais , Estado Nutricional , Maturidade Sexual/efeitos dos fármacos , Proteínas de Soja/administração & dosagem , Antropometria , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Resultado do Tratamento
11.
Mar Drugs ; 14(3)2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26938542

RESUMO

Exposure to ß-N-methylamino-l-alanine (BMAA) might be linked to the incidence of amyotrophic lateral sclerosis, Alzheimer's disease and Parkinson's disease. Analytical chemistry plays a crucial role in determining human BMAA exposure and the associated health risk, but the performance of various analytical methods currently employed is rarely compared. A CYANOCOST initiated workshop was organized aimed at training scientists in BMAA analysis, creating mutual understanding and paving the way towards interlaboratory comparison exercises. During this workshop, we tested different methods (extraction followed by derivatization and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) analysis, or directly followed by LC-MS/MS analysis) for trueness and intermediate precision. We adapted three workup methods for the underivatized analysis of animal, brain and cyanobacterial samples. Based on recovery of the internal standard D3BMAA, the underivatized methods were accurate (mean recovery 80%) and precise (mean relative standard deviation 10%), except for the cyanobacterium Leptolyngbya. However, total BMAA concentrations in the positive controls (cycad seeds) showed higher variation (relative standard deviation 21%-32%), implying that D3BMAA was not a good indicator for the release of BMAA from bound forms. Significant losses occurred during workup for the derivatized method, resulting in low recovery (<10%). Most BMAA was found in a trichloroacetic acid soluble, bound form and we recommend including this fraction during analysis.


Assuntos
Diamino Aminoácidos/análise , Cromatografia Líquida/métodos , Neurotoxinas/análise , Espectrometria de Massas em Tandem/métodos , Diamino Aminoácidos/metabolismo , Animais , Encéfalo/metabolismo , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Daphnia , Neurotoxinas/metabolismo , Reprodutibilidade dos Testes , Ácido Tricloroacético/química
12.
Anal Bioanal Chem ; 407(13): 3743-50, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25821115

RESUMO

ß-N-Methylamino-L-alanine (BMAA) is an important non-protein amino acid linked to neurodegenerative diseases, specifically amyotrophic lateral sclerosis (ALS). Because it can be transferred and bioaccumulated higher up the food chain, it poses significant public health concerns; thus, improved detection methods are of prime importance for the identification and management of these toxins. Here, we report the successful use of N-hydroxysuccinimide ester of N-butylnicotinic acid (C4-NA-NHS) for the efficient separation of BMAA from its isomers and higher sensitivity in detecting BMAA compared to the current method of choice using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization. Implementation of this efficient method allowed localization of BMAA in the non-visceral tissues of blue mussels, suggesting that more efficient depuration may be required to remove this toxin prior to consumption. This is a crucial method in establishing the absence or presence of the neurotoxic amino acid BMAA in food, environmental or biomedical samples.


Assuntos
Diamino Aminoácidos/análise , Diamino Aminoácidos/química , Análise de Alimentos/métodos , Mytilus edulis/química , Ácidos Nicotínicos/química , Succinimidas/química , Animais , Cromatografia Líquida/métodos , Toxinas de Cianobactérias , Esterificação , Espectrometria de Massas/métodos , Reprodutibilidade dos Testes , Alimentos Marinhos , Sensibilidade e Especificidade
13.
Eur J Oral Sci ; 123(6): 390-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26432388

RESUMO

Proteins from the extracellular matrix of enamel are highly specific and necessary for proper enamel formation. Most proteins are removed from the matrix by enamel proteases before complete mineralization is achieved; however, some residual protein fragments persist in the mineralized matrix of erupted enamel. So far, only amelogenin peptides obtained by traditional bottom-up proteomics have been recovered and identified in human permanent erupted enamel. In this study, we hypothesize that other enamel-specific proteins are also found in human permanent enamel, by analysing human erupted third molars. Pulverized enamel was used to extract proteins, and the protein extract was subjected directly to liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) without a previous trypsin-digestion step. Amelogenin and non-amelogenin proteins (ameloblastin and enamelin) were succesfully identified. The sequences of the naturally occurring peptides of these proteins are reported, finding in particular that most of the peptides from the amelogenin X-isoform come from the tyrosine-rich amelogenin peptide (TRAP) and that some were identified in all specimens. In conclusion, our LC-MS/MS method without trypsin digestion increased the coverage of identification of the enamel proteome from a few amelogenin peptides to a higher number of peptides from three enamel-specific proteins.


Assuntos
Esmalte Dentário , Amelogenina , Proteínas do Esmalte Dentário , Humanos , Isoformas de Proteínas , Proteoma , Espectrometria de Massas em Tandem
14.
Anal Bioanal Chem ; 405(4): 1283-92, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23180086

RESUMO

The cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) is an amino acid that is putatively associated with the pathology of amyotrophic lateral sclerosis/Parkinsonism-dementia complex (ALS-PDC) disease. It raises serious health risk concerns since cyanobacteria are ubiquitous thus making human exposure almost inevitable. The identification and quantification of BMAA in cyanobacteria is challenging because it is present only in trace amounts and occurs alongside structurally similar compounds such as BMAA isomers. This work describes an enhanced liquid chromatography/tandem mass spectrometry platform that can distinguish BMAA from its isomers ß-amino-N-methyl-alanine, N-(2-aminoethyl) glycine (AEG), and 2,4-diaminobutyric acid, thus ensuring confident identification of BMAA. The method's sensitivity was improved fourfold by a post-column addition of acetonitrile. The instrument and method limits of detection were shown to be 4.2 fmol/injection (or 0.5 pg/one column) and 0.1 µg/g dry weight of cyanobacteria, respectively. The quantification method uses synthesized deuterated BMAA as an internal standard and exhibits good linearity, accuracy, and precision. Matrix effects were also investigated, revealing an ion enhancement of around 18 %. A lab-cultured cyanobacterial sample (Leptolyngbya PCC73110) was analyzed and shown to contain about 0.73 µg/g dry weight BMAA. The isomer AEG, whose chromatographic properties closely resemble those of BMAA, was also detected. These results highlight the importance of distinguishing BMAA from its isomers for reliable identification as well as providing a sensitive and accurate quantification method for measuring trace levels of BMAA in cyanobacterial samples.


Assuntos
Diamino Aminoácidos/análise , Toxinas Bacterianas/análise , Cromatografia Líquida de Alta Pressão/métodos , Cianobactérias/química , Espectrometria de Massas em Tandem/métodos , Toxinas de Cianobactérias , Isomerismo
15.
Proc Natl Acad Sci U S A ; 107(20): 9252-7, 2010 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-20439734

RESUMO

beta-methylamino-L-alanine (BMAA), a neurotoxic nonprotein amino acid produced by most cyanobacteria, has been proposed to be the causative agent of devastating neurodegenerative diseases on the island of Guam in the Pacific Ocean. Because cyanobacteria are widespread globally, we hypothesized that BMAA might occur and bioaccumulate in other ecosystems. Here we demonstrate, based on a recently developed extraction and HPLC-MS/MS method and long-term monitoring of BMAA in cyanobacterial populations of a temperate aquatic ecosystem (Baltic Sea, 2007-2008), that BMAA is biosynthesized by cyanobacterial genera dominating the massive surface blooms of this water body. BMAA also was found at higher concentrations in organisms of higher trophic levels that directly or indirectly feed on cyanobacteria, such as zooplankton and various vertebrates (fish) and invertebrates (mussels, oysters). Pelagic and benthic fish species used for human consumption were included. The highest BMAA levels were detected in the muscle and brain of bottom-dwelling fishes. The discovery of regular biosynthesis of the neurotoxin BMAA in a large temperate aquatic ecosystem combined with its possible transfer and bioaccumulation within major food webs, some ending in human consumption, is alarming and requires attention.


Assuntos
Diamino Aminoácidos/farmacocinética , Cianobactérias/química , Exposição Ambiental , Cadeia Alimentar , Toxinas Marinhas/farmacocinética , Neurotoxinas/farmacocinética , Diamino Aminoácidos/biossíntese , Diamino Aminoácidos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Toxinas de Cianobactérias , Peixes/metabolismo , Humanos , Invertebrados/química , Toxinas Marinhas/biossíntese , Toxinas Marinhas/metabolismo , Neurotoxinas/biossíntese , Neurotoxinas/metabolismo , Mar do Norte , Suécia , Espectrometria de Massas em Tandem , Zooplâncton/química
17.
Anal Bioanal Chem ; 403(6): 1719-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22526645

RESUMO

Algal blooms are well-known sources of acute toxic agents that can be lethal to aquatic organisms. However, one such toxin, ß-N-methylamino-L-alanine (BMAA) is also believed to cause amyotrophic lateral sclerosis, also known as Lou Gehrig's disease. The detection and identification of BMAA in natural samples were challenging until the recent introduction of reliable methods. However, the issue of potential interference from unknown isomers of BMAA present in samples has not yet been thoroughly investigated. Based on a systematic database search, we generated a list of all theoretical BMAA structural isomers, which was subsequently narrowed down to seven possible interfering compounds for further consideration. The seven possible candidates satisfied the requirements of chemical stability and also shared important structural domains with BMAA. Two of the candidates, 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl) glycine (AEG) have recently been studied in the context of BMAA. A further isomer, ß-amino-N-methyl-alanine (BAMA), has to be considered because it can potentially yield the fragment ion, which is diagnostic for BMAA. Here, we report the synthesis and analysis of BAMA, together with AEG, DAB, and other isomers that are of interest in the separation and detection of BMAA in biological samples by using either high-performance liquid chromatography or ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. We detected for the first time BAMA in blue mussel and oyster samples. This work extends the previously developed liquid chromatography-tandem mass spectrometry platform Spacil et al. (Analyst 135:127, 2010) to allow BMAA isomers to be distinguished, improving the detection and identification of this important amino acid.


Assuntos
Diamino Aminoácidos/análise , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Toxinas de Cianobactérias , Isomerismo
18.
Toxics ; 10(1)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35051069

RESUMO

Electrophilic diol epoxide metabolites are involved in the carcinogenicity of benzo[a]pyrene, one of the widely studied polycyclic aromatic hydrocarbons (PAHs). The exposure of humans to this PAH can be assessed by measuring stable blood protein adducts, such as to histidine and lysine in serum albumin, from their reactive metabolites. In this respect, measurement of the adducts originating from the genotoxic (+)-anti-benzo[a]pyrene diol epoxide is of interest. However, these are difficult to measure at such low levels as are expected in humans generally exposed to benzo[a]pyrene from air pollution and the diet. The analytical methods detecting PAH-biomarkers still suffer from low selectivity and/or detectability to enable generation of data for calculation of in vivo doses of specific stereoisomers, for evaluation of risk factors and assessing risk from exposures to PAH. Here, we suggest an analytical methodology based on high-pressure liquid chromatography (HPLC) coupled to high-resolution tandem mass spectrometry (MS) to lower the detection limits as well as to increase the selectivity with improvements in both chromatographic separation and mass determination. Method development was performed using serum albumin alkylated in vitro by benzo[a]pyrene diol epoxide isomers. The (+)-anti-benzo[a]pyrene diol epoxide adducts could be chromatographically resolved by using an HPLC column with a pentafluorophenyl stationary phase. Interferences were further diminished by the high mass accuracy and resolving power of Orbitrap MS. The achieved method detection limit for the (+)-anti-benzo[a]pyrene diol epoxide adduct to histidine was approximately 4 amol/mg serum albumin. This adduct as well as the adducts to histidine from (-)-anti- and (+/-)-syn-benzo[a]pyrene diol epoxide were quantified in the samples from benzo[a]pyrene-exposed mice. Corresponding adducts to lysine were also quantified. In human serum albumin, the anti-benzo[a]pyrene diol epoxide adducts to histidine were detected in only two out of twelve samples and at a level of approximately 0.1 fmol/mg.

19.
ACS Synth Biol ; 11(1): 241-253, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34982550

RESUMO

Antibiotic resistance cassettes are indispensable tools in recombinant DNA technology, synthetic biology, and metabolic engineering. The genetic cassette encoding the TEM-1 ß-lactamase (denoted Tn3.1) is one of the most commonly used and can be found in more than 120 commercially available bacterial expression plasmids (e.g., the pET, pUC, pGEM, pQE, pGEX, pBAD, and pSEVA series). A widely acknowledged problem with the cassette is that it produces excessively high titers of ß-lactamase that rapidly degrade ß-lactam antibiotics in the culture media, leading to loss of selective pressure, and eventually a large percentage of cells that do not have a plasmid. To address these shortcomings, we have engineered a next-generation version that expresses minimal levels of ß-lactamase (denoted Tn3.1MIN). We have also engineered a version that is compatible with the Standard European Vector Architecture (SEVA) (denoted Ap (pSEVA#1MIN--)). Expression plasmids containing either Tn3.1MIN or Ap (pSEVA#1MIN--) can be selected using a 5-fold lower concentration of ß-lactam antibiotics and benefit from the increased half-life of the ß-lactam antibiotics in the culture medium (3- to 10-fold). Moreover, more cells in the culture retain the plasmid. In summary, we present two antibiotic-efficient genetic cassettes encoding the TEM-1 ß-lactamase that reduce antibiotic consumption (an integral part of antibiotic stewardship), reduce production costs, and improve plasmid performance in bacterial cell factories.


Assuntos
Antibacterianos , Plasmídeos , beta-Lactamases , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , beta-Lactamases/genética
20.
Structure ; 30(5): 733-742.e7, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35290795

RESUMO

Disordered proteins pose a major challenge to structural biology. A prominent example is the tumor suppressor p53, whose low expression levels and poor conformational stability hamper the development of cancer therapeutics. All these characteristics make it a prime example of "life on the edge of solubility." Here, we investigate whether these features can be modulated by fusing the protein to a highly soluble spider silk domain (NT∗). The chimeric protein displays highly efficient translation and is fully active in human cancer cells. Biophysical characterization reveals a compact conformation, with the disordered transactivation domain of p53 wrapped around the NT∗ domain. We conclude that interactions with NT∗ help to unblock translation of the proline-rich disordered region of p53. Expression of partially disordered cancer targets is similarly enhanced by NT∗. In summary, we demonstrate that inducing co-translational folding via a molecular "spindle and thread" mechanism unblocks protein translation in vitro.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Ligação Proteica , Domínios Proteicos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA