Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951989

RESUMO

Actinide +IV complexes with six nitrates [AnIV(NO3)6]2- (An = Th, U, Np, and Pu) have been studied by 15N and 17O NMR spectroscopy in solution and first-principles calculations. Magnetic susceptibilities were evaluated experimentally using the Evans method and are in good agreement with the ab initio values. The evolution in the series of the crystal field parameters deduced from ab initio calculations is discussed. The NMR paramagnetic shifts are analyzed based on ab initio calculations. Because the cubic symmetry of the complex quenches the dipolar contribution, they are only of Fermi contact origin. They are evaluated from first-principles based on a complete active space/density functional theory (DFT) strategy, in good accordance with the experimental one. The ligand hyperfine coupling constants are deduced from paramagnetic shifts and calculated using unrestricted DFT. The latter are decomposed in terms of the contribution of molecular orbitals. It highlights two pathways for the delocalization of the spin density from the metallic open-shell 5f orbitals to the NMR active nuclei, either through the valence 5f hybridized with 6d to the valence 2p molecular orbitals of the ligands, or by spin polarization of the metallic 6p orbitals which interact with the 2s-based molecular orbitals of the ligands.

2.
Chemistry ; 27(24): 7138-7153, 2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33406305

RESUMO

Actinide +VI complexes ( A n V I = U V I , N p V I and P u V I ) with dipicolinic acid derivatives were synthesized and characterized by powder XRD, SQUID magnetometry and NMR spectroscopy. In addition, N p V I and P u V I complexes were described by first principles CAS based and two-component spin-restricted DFT methods. The analysis of the 1 H paramagnetic NMR chemical shifts for all protons of the ligands according to the X-rays structures shows that the Fermi contact contribution is negligible in agreement with spin density determined by unrestricted DFT. The magnetic susceptibility tensor is determined by combining SQUID, pNMR shifts and Evans' method. The SO-RASPT2 results fit well the experimental magnetic susceptibility and pNMR chemical shifts. The role of the counterions in the solid phase is pointed out; their presence impacts the magnetic properties of the N p V I complex. The temperature dependence of the pNMR chemical shifts has a strong 1 / T contribution, contrarily to Bleaney's theory for lanthanide complexes. The fitting of the temperature dependence of the pNMR chemical shifts and SQUID magnetic susceptibility by a two-Kramers-doublet model for the N p V I complex and a non-Kramers-doublet model for the P u V I complex allows for the experimental evaluation of energy gaps and magnetic moments of the paramagnetic center.

3.
J Biol Inorg Chem ; 25(7): 941-948, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910275

RESUMO

Fetuin is an abundant blood protein that participates in multiple biological processes, including the transport and regulation of calcium. Fetuin is also known to have a high affinity for uranium (as the uranyl dioxo cation) and plutonium, thus it has been suggested as one of the main endogenous chelating biomolecules involved in the transport of actinides following an internal uptake event. Nevertheless, no direct measurements of its affinity for f-elements beside these two actinides have been reported. Here, we investigate the interaction between fetuin and trivalent lanthanides, such as samarium, europium, terbium, and dysprosium, by mass spectrometry and fluorescence spectroscopy. Mass spectrometry results indicated that fetuin has four metal binding sites for the metal ions studied. Upon formation, the metal-protein complexes showed luminescence emission as a result of antenna sensitization of the metal ions, whose photophysics were characterized and exploited to perform direct spectrofluorimetric titrations. Furthermore, the thermodynamic constants were calculated for all complexes, confirming the formation of stable complexes with log [Formula: see text] values between 26 and 27. In characterizing the affinity of the serum protein fetuin for several f-elements, this study expands upon the initial findings focused on uranyl and plutonium, and contributes to a better understanding of the internal distribution and deposition of lanthanides, potentially representative of trivalent actinides.


Assuntos
Fetuínas/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Espectrometria de Massas , Ligação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência
4.
Chemistry ; 26(15): 3390-3403, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-31943407

RESUMO

The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complex of UIV with H2 O, OH- , and F- as axial ligands was studied by using UV/Vis spectrophotometry, ESI-MS, NMR spectroscopy, X-ray crystallography, and electrochemistry. The UIV -DOTA complex with either water or fluoride as axial ligands was found to be inert to oxidation by molecular oxygen, whereas the complex with hydroxide as an axial ligand slowly hydrolyzed and was oxidized by dioxygen to a diuranate precipitate. The combined data set acquired shows that, although axial substitution of fluoride and hydroxide ligands instead of water does not seem to significantly change the aqueous DOTA complex structure, it has an important effect on the electronic configuration of the complex. The UIV /UIII redox couple was found to be quasi-reversible for the complex with both axially bonded H2 O and hydroxide, but irreversible for the complex with axially bonded fluoride. Intriguingly, binding of the axial fluoride renders the irreversible one-electron UV /UIV oxidation of the [UIV (DOTA)(H2 O)] complex quasi-reversible, which suggests the formation of the short-lived pentavalent form of the complex, an aqueous non-uranyl chelated UV cation.

5.
Inorg Chem ; 56(20): 12248-12259, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28968074

RESUMO

The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am3+ and Pu3+) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H2O)]-, where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

6.
Inorg Chem ; 55(22): 11930-11936, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27802058

RESUMO

Targeted α therapy holds tremendous potential as a cancer treatment: it offers the possibility of delivering a highly cytotoxic dose to targeted cells while minimizing damage to surrounding healthy tissue. The metallic α-generating radioisotopes 225Ac and 227Th are promising radionuclides for therapeutic use, provided adequate chelation and targeting. Here we demonstrate a new chelating platform composed of a multidentate high-affinity oxygen-donating ligand 3,4,3-LI(CAM) bound to the mammalian protein siderocalin. Respective stability constants log ß110 = 29.65 ± 0.65, 57.26 ± 0.20, and 47.71 ± 0.08, determined for the EuIII (a lanthanide surrogate for AcIII), ZrIV, and ThIV complexes of 3,4,3-LI(CAM) through spectrophotometric titrations, reveal this ligand to be one of the most powerful chelators for both trivalent and tetravalent metal ions at physiological pH. The resulting metal-ligand complexes are also recognized with extremely high affinity by the siderophore-binding protein siderocalin, with dissociation constants below 40 nM and tight electrostatic interactions, as evidenced by X-ray structures of the protein:ligand:metal adducts with ZrIV and ThIV. Finally, differences in biodistribution profiles between free and siderocalin-bound 238PuIV-3,4,3-LI(CAM) complexes confirm in vivo stability of the protein construct. The siderocalin:3,4,3-LI(CAM) assembly can therefore serve as a "lock" to consolidate binding to the therapeutic 225Ac and 227Th isotopes or to the positron emission tomography emitter 89Zr, independent of metal valence state.


Assuntos
Quelantes/química , Complexos de Coordenação/química , Proteínas/química , Radioterapia/métodos , Tório/química , Zircônio/química , Animais , Complexos de Coordenação/farmacocinética , Feminino , Ligantes , Camundongos , Modelos Químicos , Distribuição Tecidual
7.
Nat Chem ; 9(9): 843-849, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28837177

RESUMO

Berkelium (Bk) has been predicted to be the only transplutonium element able to exhibit both +III and +IV oxidation states in solution, but evidence of a stable oxidized Bk chelate has so far remained elusive. Here we describe the stabilization of the heaviest 4+ ion of the periodic table, under mild aqueous conditions, using a siderophore derivative. The resulting Bk(IV) complex exhibits luminescence via sensitization through an intramolecular antenna effect. This neutral Bk(IV) coordination compound is not sequestered by the protein siderocalin-a mammalian metal transporter-in contrast to the negatively charged species obtained with neighbouring trivalent actinides americium, curium and californium (Cf). The corresponding Cf(III)-ligand-protein ternary adduct was characterized by X-ray diffraction analysis. Combined with theoretical predictions, these data add significant insight to the field of transplutonium chemistry, and may lead to innovative Bk separation and purification processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA