Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Biomacromolecules ; 19(7): 2691-2699, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665336

RESUMO

We present a star copolypeptide-based hydrogel ink capable of structural microfabrication using 3D extrusion printing. The material comprises an amphiphilic block copolymer structure of poly(benzyl-l-glutamate)- b-oligo(l-valine), which spontaneously forms hydrogels through hydrophobic interactions. The chemical design allows the bulk phase of the hydrogel to remain intact after application of shear due to its self-recovery behavior. It is demonstrated that the composition of the materials is ideally suited for 3D printing with scaffolds capable of maintaining structural cohesion after extrusion. Post extrusion UV-triggered fixation of the printed structures is carried out, resulting in stable hydrogel constructs. The constructs were found to be degradable, exhibited favorable release of encapsulated molecular cargo, and do not appear to affect the metabolic health of the commonly used fibroblastic cell line Balb/3T3 in the absence of the reactive diluent N, N'-methylenebis(acrylamide). The star copolypeptide inks allow for rapid prototyping enabling the fabrication of defined intricate microstructures, providing a platform for complex scaffold development that would otherwise be unattainable with other processing techniques such as molding or casting.


Assuntos
Plásticos Biodegradáveis/química , Hidrogéis/química , Peptídeos/química , Impressão Tridimensional , Células 3T3 , Animais , Ácido Glutâmico/análogos & derivados , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Valina/análogos & derivados
2.
Soft Matter ; 12(10): 2700-7, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26860207

RESUMO

The mechanism and design rules associated with the self-assembly of short peptides into hydrogels is currently not well understood. In this work, four diphenylalanine-based peptides have been synthesised, bearing heterocyclic capping groups which have different degrees of hydrogen bonding potential and nitrogen substitution. For these four peptides, zeta potential and electrical impedance spectroscopy measurements were undertaken to monitor gelation, with the impedance data showing different gelation times for each peptide hydrogel. Through a combination of atomic force microscopy and rheological measurmeents, including dynamic strain and frequency sweeps, and thixotropic tests, the relationship between the mechanism of self-assembly in these hydrogels and their macroscopic behaviour can be established. It is observed that the degree of nitrogen substitution affects the self-assembly mechanisms of the hydrogels and as such, that there is an interplay between branching and bundling self-assembly pathways that are responsible for the final properties of each hydrogel.


Assuntos
Dipeptídeos/química , Compostos Heterocíclicos/química , Hidrogéis/química , Fenilalanina/análogos & derivados , Dipeptídeos/síntese química , Compostos Heterocíclicos/síntese química , Hidrogéis/síntese química , Ligação de Hidrogênio , Microscopia de Força Atômica , Fenilalanina/síntese química , Fenilalanina/química , Reologia
3.
Macromol Rapid Commun ; 36(12): 1211-7, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864515

RESUMO

A smart valve is created by 4D printing of hydrogels that are both mechanically robust and thermally actuating. The printed hydrogels are made up of an interpenetrating network of alginate and poly(N-isopropylacrylamide). 4D structures are created by printing the "dynamic" hydrogel ink alongside other static materials.


Assuntos
Resinas Acrílicas/química , Alginatos/química , Hidrogéis/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química
4.
Sci Rep ; 14(1): 8734, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627460

RESUMO

This research aimed to determine whether accomplished surfers could accurately perceive how changes to surfboard fin design affected their surfing performance. Four different surfboard fins, including conventional, single-grooved, and double-grooved fins, were developed using computer-aided design combined with additive manufacturing (3D printing). We systematically installed these 3D-printed fins into instrumented surfboards, which six accomplished surfers rode on waves in the ocean in a random order while blinded to the fin condition. We quantified the surfers' wave-riding performance during each surfing bout using a sport-specific tracking device embedded in each instrumented surfboard. After each fin condition, the surfers rated their perceptions of the Drive, Feel, Hold, Speed, Stiffness, and Turnability they experienced while performing turns using a visual analogue scale. Relationships between the surfer's perceptions of the fins and their surfing performance data collected from the tracking devices were then examined. The results revealed that participants preferred the single-grooved fins for Speed and Feel, followed by double-grooved fins, commercially available fins, and conventional fins without grooves. Crucially, the surfers' perceptions of their performance matched the objective data from the embedded sensors. Our findings demonstrate that accomplished surfers can perceive how changes to surfboard fins influence their surfing performance.

5.
Appl Microbiol Biotechnol ; 97(10): 4243-58, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525900

RESUMO

The development of cell printing is vital for establishing biofabrication approaches as clinically relevant tools. Achieving this requires bio-inks which must not only be easily printable, but also allow controllable and reproducible printing of cells. This review outlines the general principles and current progress and compares the advantages and challenges for the most widely used biofabrication techniques for printing cells: extrusion, laser, microvalve, inkjet and tissue fragment printing. It is expected that significant advances in cell printing will result from synergistic combinations of these techniques and lead to optimised resolution, throughput and the overall complexity of printed constructs.


Assuntos
Células , Impressão , Lasers , Engenharia Tecidual/métodos
6.
ACS Appl Mater Interfaces ; 15(32): 38833-38845, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37537952

RESUMO

The design of neural electrodes has changed in the past decade, driven mainly by the development of new materials that open the possibility of manufacturing electrodes with adaptable mechanical properties and promising electrical properties. In this paper, we report on the mechanical and electrochemical properties of a polydimethylsiloxane (PDMS) composite with edge-functionalized graphene (EFG) and demonstrate its potential for use in neural implants with the fabrication of a novel neural cuff electrode. We have shown that a 200 µm thick 1:1 EFG/PDMS composite film has a stretchability of up to 20%, a Young's modulus of 2.52 MPa, and a lifetime of more than 10000 mechanical cycles, making it highly suitable for interfacing with soft tissue. Electrochemical characterization of the EFG/PDMS composite film showed that the capacitance of the composite increased up to 35 times after electrochemical reduction, widening the electrochemical water window and remaining stable after soaking for 5 weeks in phosphate buffered saline. The electrochemically activated EFG/PDMS electrode had a 3 times increase in the charge injection capacity, which is more than double that of a commercial platinum-based neural cuff. Electrochemical and spectrochemical investigations supported the conclusion that this effect originated from the stable chemisorption of hydrogen on the graphene surface. The biocompatibility of the composite was confirmed with an in vitro cell culture study using mouse spinal cord cells. Finally, the potential of the EFG/PDMS composite was demonstrated with the fabrication of a novel neural cuff electrode, whose double-layered and open structured design increased the cuff stretchability up to 140%, well beyond that required for an operational neural cuff. In addition, the cuff design offers better integration with neural tissue and simpler nerve fiber installation and locking.


Assuntos
Grafite , Tecido Nervoso , Camundongos , Animais , Eletrodos , Dimetilpolisiloxanos/química
7.
Anal Chem ; 84(22): 9679-83, 2012 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23116365

RESUMO

The on-demand printing of living cells using inkjet technologies has recently been demonstrated and allows for the controlled deposition of cells in microarrays. Here, we show that such arrays can be interrogated directly by robot-controlled liquid microextraction coupled with chip-based nanoelectospray mass spectrometry. Such automated analyses generate a profile of abundant membrane lipids that are characteristic of cell type. Significantly, the spatial control in both deposition and extraction steps combined with the sensitivity of the mass spectrometric detection allows for robust molecular profiling of individual cells.


Assuntos
Bioimpressão/métodos , Tinta , Metabolismo dos Lipídeos , Análise de Célula Única/métodos , Análise Serial de Tecidos/métodos , Animais , Bioimpressão/instrumentação , Linhagem Celular , Espectrometria de Massas , Camundongos , Nanotecnologia , Ratos , Robótica , Análise de Célula Única/instrumentação , Análise Serial de Tecidos/instrumentação
8.
Analyst ; 137(5): 1100-10, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22121496

RESUMO

Unsaturated lipids deposited onto a range of materials are observed to react with the low concentrations of ozone present in normal laboratory air. Parent lipids and ozonolysis cleavage products are both detected directly from surfaces by desorption electrospray ionisation mass spectrometry (DESI-MS) with the resulting mass spectra providing clear evidence of the double bond position within these molecules. This serendipitous process has been coupled with thin-layer chromatography (TLC) to provide a simple but powerful approach for the detailed structural elucidation of lipids present in complex biological extracts. Lipid extracts from human lens were deposited onto normal phase TLC plates and then developed to separate components according to lipid class. Exposure of the developed plates to laboratory air for ca. 1 h prior to DESI-MS analysis gave rise to ozonolysis products allowing for the unambiguous identification of double bond positions in even low abundant, unsaturated lipids. In particular, the co-localization of intact unsaturated lactosylceramides (LacCer) with products from their oxidative cleavage provide the first evidence for the presence of three isomeric LacCer (d18:0/24:1) species in the ocular lens lipidome, i.e., variants with double bonds at the n-9, n-7 and n-5 positions.


Assuntos
Lipídeos/química , Ozônio/química , Cromatografia em Camada Fina , Humanos , Isomerismo , Cristalino/química , Lipídeos/isolamento & purificação , Espectrometria de Massas por Ionização por Electrospray
9.
MRS Adv ; 7(23-24): 489-494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615444

RESUMO

In this work, CAD design and additive manufacturing (3D printing) are used to fabricate surgical staples. The staples were analysed on their mechanical robustness according to ASTM standard F564-17 which involved the in-house design, prototyping and fabrication (using 3D printing) of specialized grips and extension blocks. Our results indicated that staples 3D printed using carbon fibre reinforced nylon 6 (CF-PA6) exhibited a strength value of 37 ± 3 MPa coupled with an implantation-suitable ductility value of 26 ± 4%. The mechanical robustness of CF-PA6 staples subjected to immersion in simulated body fluid resulted in a reduction in stiffness and strength of 40% and 70% over 5 weeks, respectively. The carbon fibre nylon composite staples were able to handle a load of 15 kg and 5 kg prior and following immersion in simulated body fluid, respectively.

10.
Polymers (Basel) ; 13(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34641095

RESUMO

The demand for wound care products, especially advanced and active wound care products is huge. In this study, gellan gum (GG) and virgin coconut oil (VCO) were utilized to develop microemulsion-based hydrogel for wound dressing materials. A ternary phase diagram was constructed to obtain an optimized ratio of VCO, water, and surfactant to produce VCO microemulsion. The VCO microemulsion was incorporated into gellan gum (GG) hydrogel (GVCO) and their chemical interaction, mechanical performance, physical properties, and thermal behavior were examined. The stress-at-break (σ) and Young's modulus (YM) of GVCO hydrogel films were increased along with thermal behavior with the inclusion of VCO microemulsion. The swelling degree of GVCO hydrogel decreased as the VCO microemulsion increased and the water vapor transmission rate of GVCO hydrogels was comparable to commercial dressing in the range of 332-391 g m-2 d-1. The qualitative antibacterial activities do not show any inhibition against Gram-negative (Escherichia coli and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. In vivo studies on Sprague-Dawley rats show the wound contraction of GVCO hydrogel is best (95 ± 2%) after the 14th day compared to a commercial dressing of Smith and Nephew Opsite post-op waterproof dressing, and this result is supported by the ultrasound images of wound skin and histological evaluation of the wound. The findings suggest that GVCO hydrogel has the potential to be developed as a biomedical material.

11.
PLoS One ; 15(4): e0232035, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315359

RESUMO

We present field results revealing improved surfing performance when a novel approach ("Real Whale", RW) is used for applying several of the humpback whale's passive flow control mechanisms, including tubercles, to surfboard fins. It is also the first study presenting evidence of dynamic performance of tubercled designs rotating on all three axes. We evaluated low aspect ratio, thruster-style 3-fin configurations used in high-performance surfing. Fieldwork involved surfing almost 2,000 ocean waves from around the world, comparing standard commercial fins with straight leading edges to RW fins. We collected surfing data from instrumentation attached to surfboards, including GPS and 9-axis motion sensors. Eighteen turn performance values were measured and calculated, including novel, surfing-specific rotational power coefficients. ANOVA revealed surfers using RW fins showed significant improvements in power generation compared to when they used standard commercial fins. Turn rates using RW fins also improved, although not significantly. We found using RW fins allowed a skilled surfer to improve their surfing performance relative to a professionally ranked surfer.


Assuntos
Adaptação Biológica , Nadadeiras de Animais/anatomia & histologia , Desempenho Atlético/fisiologia , Biomimética , Jubarte/anatomia & histologia , Hidrodinâmica , Esportes/fisiologia , Adolescente , Adulto , Animais , Fenômenos Biomecânicos , Sistemas de Informação Geográfica , Humanos , Masculino , Oceanos e Mares , Resistência Física , Adulto Jovem
12.
J Mater Chem B ; 8(15): 3104-3112, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32207762

RESUMO

The ability to control the response of self-assembled systems upon exposure to external stimuli has been a long-standing goal of supramolecular chemistry. Short peptides are an attractive platform to realise this objective due to their chemical diversity and modular nature. Here, we synthesise a library of Fmoc-capped tetrapeptides, each containing two tyrosine and two lysine residues and varying in their amino acid sequence. Despite having similar secondary structure, these tetrapeptides form structures which are highly sequence dependent, yielding aggregates, nanofibres or monomers. This in turn highly affects the rate and degree of oxidative polymerisation by the enzyme tyrosinase, with self-assembled nanofibres exhibiting a greater degree of polymerisation. We monitor the formation of tyrosine oxidation products over time, finding that the precipitation of polymers is driven by quinone-based species. This affects the electrochemical properties of the oxidised peptide polymers, as determined through electrical impedance spectroscopy. Finally, intrinsic fluorescence microscale thermophoresis studies confirm that the degree of oxidative polymerisation is highly dependent on tyrosine solvent accessibility and the presence of peptide monomers. The ability to tune the kinetics of enzymatically active substrates and understand their polymerisation pathways on a molecular level is important for the creation of programmable, enzyme responsive biomaterials.


Assuntos
Lisina/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oligopeptídeos/metabolismo , Tirosina/metabolismo , Biocatálise , Técnicas Eletroquímicas , Lisina/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Estrutura Molecular , Monofenol Mono-Oxigenase/química , Oligopeptídeos/química , Oxirredução , Tamanho da Partícula , Polimerização , Propriedades de Superfície , Tirosina/química
13.
Soft Robot ; 5(6): 685-694, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30040042

RESUMO

Continued technological progress in robotic systems has led to more applications where robots and humans operate in close proximity and even physical contact in some cases. Soft robots, which are made of highly compliant and deformable materials, provide inherent safety features unlike conventional robots that are made of stiff and rigid components. Soft robotics is a rapidly developing field exploiting biomimetic design principles, novel sensor and actuation concepts, and advanced manufacturing techniques. In this study, we propose novel 3D printable soft vacuum actuators that are inspired by the sporangium of fern trees. These actuators that are directly manufactured using commercial and affordable fused deposition modeling 3D printers offer many advantages such as high actuation speed (5.54 Hz), long lifetime (123,000 cycles), large payload to weight ratio (∼26), and significant output forces (∼16 N). The behavior of these actuators is accurately predicted, and their performance is optimized using finite element modeling. Furthermore, diverse robotic applications such as locomotion robots (a walking robot moving with an average forward speed of vf = 3.54 cm/s, and a hopping robot called Gongaroo hopping with an average speed of vf = 3.75 cm/s), grippers, and artificial muscles have been established and activated using the new soft actuation concept. Finally, to demonstrate the modularity of the proposed actuation concept, soft actuators with multiple degrees of freedom and variable length are established using a series of 3D printable vacuum hinges.


Assuntos
Órgãos Artificiais , Materiais Biomiméticos/química , Elastômeros/química , Impressão Tridimensional/instrumentação , Robótica/métodos , Materiais Inteligentes/química , Gleiquênias/anatomia & histologia , Gleiquênias/fisiologia , Análise de Elementos Finitos , Humanos , Movimento/fisiologia , Músculo Esquelético/fisiologia , Robótica/instrumentação , Esporângios/anatomia & histologia , Esporângios/fisiologia , Vácuo
14.
Soft Matter ; 3(7): 840-843, 2007 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32900075

RESUMO

We have fabricated novel water sensitive transparent films on flexible substrates by inkjet printing of aqueous based inks of single- and multi-walled carbon nanotubes dispersed with ultra low concentrations of the biopolymers gellan and xanthan gum.

15.
J Mater Chem B ; 5(27): 5318-5328, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32264070

RESUMO

The development of highly swollen, strong, conductive hydrogel materials is necessary for the advancement of edible device research. Using a gellan gum/gelatin ionic-covalent entanglement (ICE) hydrogel, a simple method of producing conductive, edible hydrogels is described. ICE gels containing NaCl or CsCl were developed which exhibited conductivities of 200 ± 20 mS cm-1 and 380 ± 30 mS cm-1, respectively. Furthermore, the potential of food grade products for use as edible electrodes was examined by analysing the electrical properties of alginate-gelatin hydrogels, Vegemite, Marmite, jelly and gold leaf. Lastly, these edible ICE gels were used to demonstrate a capacitive pressure sensor from consumable materials, which displayed a sensitivity of 0.80 ± 0.06 pF kPa-1 for a range of 4-20 kPa. The pressure exerted by the GI tract on its contents is standardly 0.7 kPa to 6.3 kPa. This suggests potential for application in the detection of digestive pressure abnormalities such as intestinal motility disorders.

16.
Adv Mater ; 29(10)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28075033

RESUMO

A hydrogel-dielectric-elastomer system, polyacrylamide and poly(dimethylsiloxane) (PDMS), is adapted for extrusion printing for integrated device fabrication. A lithium-chloride-containing hydrogel printing ink is developed and printed onto treated PDMS with no visible signs of delamination and geometrically scaling resistance under moderate uniaxial tension and fatigue. A variety of designs are demonstrated, including a resistive strain gauge and an ionic cable.

17.
J Am Soc Mass Spectrom ; 28(7): 1345-1358, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28484972

RESUMO

Reaction products from the ozonolysis of unsaturated lipids at gas-liquid interfaces have the potential to significantly influence the chemical and physical properties of organic aerosols in the atmosphere. In this study, the gas-phase dissociation behavior of lipid secondary ozonides is investigated using ion-trap mass spectrometry. Secondary ozonides were formed by reaction between a thin film of unsaturated lipids (fatty acid methyl esters or phospholipids) with ozone before being transferred to the gas phase as [M + Na]+ ions by electrospray ionization. Activation of the ionized ozonides was performed by either energetic collisions with helium buffer-gas or laser photolysis, with both processes yielding similar product distributions. Products arising from the decomposition of the ozonides were characterized by their mass-to-charge ratio and subsequent ion-molecule reactions. Product assignments were rationalized as arising from initial homolysis of the ozonide oxygen-oxygen bond with subsequent decomposition of the nascent biradical intermediate. In addition to classic aldehyde and carbonyl oxide-type fragments, carbon-centered radicals were identified with a number of decomposition pathways that indicated facile unimolecular radical migration. These findings reveal that photoactivation of secondary ozonides formed by the reaction of aerosol-bound lipids with tropospheric ozone may initiate radical-mediated chemistry within the particle resulting in surface modification. Graphical Abstract ᅟ.

18.
J Phys Chem B ; 110(26): 13029-36, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16805610

RESUMO

Fabrication of single-walled carbon nanotube (SWNT) networks using evaporation of SDS-SWNT sessile drops on a hydrophobized silicon substrate is reported. It is suggested that the organization of nanotubes during evaporation is controlled by aggregates (in the SDS-SWNT dispersion) and hydrophobicity of the substrate. On hydrophobic substrates, the evaporation of SDS-SWNT sessile drops proceeds through constant contact area. On hydrophilic substrates, nanotube aggregates in SDS-SWNT dispersion stop the contact line from moving, resulting in the formation of "coffee-stains". The (partial) removal of aggregates by centrifugation is essential for a freely moving contact line leading to the organization of nanotubes into a network of homogeneously distributed nanotubes on the most hydrophobic substrate. The evaporation of sessile drops was characterized by microscopic, spectroscopic, and topographical techniques.

19.
Adv Mater ; 28(41): 9060-9093, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27488822

RESUMO

Over the past few years, there has been a great deal of interest in the development of hydrogel materials with tunable structural, mechanical, and rheological properties, which exhibit rapid and autonomous self-healing and self-recovery for utilization in a broad range of applications, from soft robotics to tissue engineering. However, self-healing hydrogels generally either possess mechanically robust or rapid self-healing properties but not both. Hence, the development of a mechanically robust hydrogel material with autonomous self-healing on the time scale of seconds is yet to be fully realized. Here, the current advances in the development of autonomous self-healing hydrogels are reviewed. Specifically, methods to test self-healing efficiencies and recoveries, mechanisms of autonomous self-healing, and mechanically robust hydrogels are presented. The trends indicate that hydrogels that self-heal better also achieve self-healing faster, as compared to gels that only partially self-heal. Recommendations to guide future development of self-healing hydrogels are offered and the potential relevance of self-healing hydrogels to the exciting research areas of 3D/4D printing, soft robotics, and assisted health technologies is highlighted.

20.
J Phys Chem B ; 109(27): 13205-9, 2005 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-16852646

RESUMO

The interaction between redox polymers, based on Ru- or Os-bis(2,2'-bipyridyl)-poly(4-vinylpyridine), and carbon nanotubes was investigated by spectroscopic and microscopic techniques. These metallopolymers were found to be excellent dispersants for nanotubes, as a result of a good wetting interaction between polymer and nanotubes. The results obtained show that well-coated individual nanotubes can be obtained. In addition, interactions between nanotubes and polymers did not significantly affect the electronic and electrochemical properties of the metallopolymers. On the basis of the electrochemical properties of the polymers this opens the possibility of adding functionality through interaction with nanotubes, either as redox active materials with enhanced mechanical properties or by using these modified nanotubes as nanosized electrochemical sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA