Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Digit Health ; 6(1): e44-e57, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071118

RESUMO

BACKGROUND: Artificial intelligence (AI) systems for automated chest x-ray interpretation hold promise for standardising reporting and reducing delays in health systems with shortages of trained radiologists. Yet, there are few freely accessible AI systems trained on large datasets for practitioners to use with their own data with a view to accelerating clinical deployment of AI systems in radiology. We aimed to contribute an AI system for comprehensive chest x-ray abnormality detection. METHODS: In this retrospective cohort study, we developed open-source neural networks, X-Raydar and X-Raydar-NLP, for classifying common chest x-ray findings from images and their free-text reports. Our networks were developed using data from six UK hospitals from three National Health Service (NHS) Trusts (University Hospitals Coventry and Warwickshire NHS Trust, University Hospitals Birmingham NHS Foundation Trust, and University Hospitals Leicester NHS Trust) collectively contributing 2 513 546 chest x-ray studies taken from a 13-year period (2006-19), which yielded 1 940 508 usable free-text radiological reports written by the contemporary assessing radiologist (collectively referred to as the "historic reporters") and 1 896 034 frontal images. Chest x-rays were labelled using a taxonomy of 37 findings by a custom-trained natural language processing (NLP) algorithm, X-Raydar-NLP, from the original free-text reports. X-Raydar-NLP was trained on 23 230 manually annotated reports and tested on 4551 reports from all hospitals. 1 694 921 labelled images from the training set and 89 238 from the validation set were then used to train a multi-label image classifier. Our algorithms were evaluated on three retrospective datasets: a set of exams sampled randomly from the full NHS dataset reported during clinical practice and annotated using NLP (n=103 328); a consensus set sampled from all six hospitals annotated by three expert radiologists (two independent annotators for each image and a third consultant to facilitate disagreement resolution) under research conditions (n=1427); and an independent dataset, MIMIC-CXR, consisting of NLP-annotated exams (n=252 374). FINDINGS: X-Raydar achieved a mean AUC of 0·919 (SD 0·039) on the auto-labelled set, 0·864 (0·102) on the consensus set, and 0·842 (0·074) on the MIMIC-CXR test, demonstrating similar performance to the historic clinical radiologist reporters, as assessed on the consensus set, for multiple clinically important findings, including pneumothorax, parenchymal opacification, and parenchymal mass or nodules. On the consensus set, X-Raydar outperformed historical reporter balanced accuracy with significance on 27 of 37 findings, was non-inferior on nine, and inferior on one finding, resulting in an average improvement of 13·3% (SD 13·1) to 0·763 (0·110), including a mean 5·6% (13·2) improvement in critical findings to 0·826 (0·119). INTERPRETATION: Our study shows that automated classification of chest x-rays under a comprehensive taxonomy can achieve performance levels similar to those of historical reporters and exhibit robust generalisation to external data. The open-sourced neural networks can serve as foundation models for further research and are freely available to the research community. FUNDING: Wellcome Trust.


Assuntos
Inteligência Artificial , Interpretação de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Estudos Retrospectivos , Raios X
2.
Lancet Digit Health ; 4(10): e705-e716, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36038496

RESUMO

BACKGROUND: Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19. METHODS: For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes. FINDINGS: Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2·97 [95% CI 1·43-6·27], p=0·0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1·89 [95% CI 1·17-3·20] per SD, p=0·012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [≥6·99] vs low [<6·99] C19-RS; hazard ratio [HR] 3·31 [95% CI 1·49-7·33], p=0·0033; and 2·58 [1·10-6·05], p=0·028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8·24 (95% CI 2·16-31·36, p=0·0019) in patients who received no dexamethasone treatment, but 2·27 (0·69-7·55, p=0·18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0·61, p=0·00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways. INTERPRETATION: Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. FUNDING: Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.


Assuntos
COVID-19 , SARS-CoV-2 , Angiografia , Inteligência Artificial , COVID-19/diagnóstico por imagem , Citocinas , Humanos , Inflamação/diagnóstico por imagem , Estudos Prospectivos , Medicina Estatal , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA