Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 14(9): 2357-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25693799

RESUMO

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Assuntos
Proteínas de Neoplasias/sangue , Neoplasias/metabolismo , Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo , Espectrometria de Massas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/sangue , Peptídeos/química , Reprodutibilidade dos Testes
2.
Mol Cell Proteomics ; 12(9): 2623-39, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23689285

RESUMO

Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.


Assuntos
Cromatografia Líquida/instrumentação , Cromatografia Líquida/métodos , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Sequência de Aminoácidos , Animais , Bovinos , Limite de Detecção , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Padrões de Referência , Software , Fatores de Tempo
3.
J AOAC Int ; 105(1): 288-298, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-34894257

RESUMO

BACKGROUND: Vitamin A test results have historically been notorious for poor repeatability and reproducibility. This problem has been discussed at length in Association of American Feed Control Officials Laboratory Methods and Services Committee meetings. OBJECTIVE: The objective of this work was to assess the effect of test portion mass on the repeatability of vitamin A test results. METHODS: The study was conducted in two parts. In Part I, fundamental sampling error (FSE) was determined experimentally through replicated (n = 16) vitamin A testing of three animal feed materials. The testing followed rigorous test portion selection for 10 g and 100 g test portions. In Part II, FSE calculations were made (1) using theoretical equations based on vitamin A as a liberated analyte and (2) on representing the particles in feed materials. Particle size characterization of vitamin A ingredients was estimated by microscopy and further evaluated by particle size analysis. RESULTS: RSDs, % for vitamin A determinations ranged from 10.5-24.7, and 2.26-10.7 for 10 g and 100 g test portions, respectively. FSE calculated for Ingredient A ranged from 18.3-101% and 5.79-32.0% for 10 g and 100 g test portions, respectively, and for Ingredient B, ranged from 10.2-56.2% and 3.21-17.8% for 10 g and 100 g test portions, respectively. CONCLUSION: Test portion mass has a substantial impact on FSE and is an important factor in controlling the random error in vitamin A testing. FSE equations are useful to approximate minimum test portion mass. HIGHLIGHTS: Vitamin A method development should use theoretical predictions and experimental verification to guide test portion mass. Strategies to deal with the larger test portion masses will be key to validating new methods.


Assuntos
Ração Animal , Vitamina A , Ração Animal/análise , Animais , Reprodutibilidade dos Testes
4.
Bioconjug Chem ; 20(1): 47-59, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19072698

RESUMO

An acid-cleavable PEG lipid, 1'-(4'-cholesteryloxy-3'-butenyl)-omega-methoxy-polyethylene[112] glycolate (CVEP), has been developed that produces stable liposomes when dispersed as a minor component (0.5-5 mol %) in 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE). Cleavage of CVEP at mildly acidic pHs results in dePEGylation of the latently fusogenic DOPE liposomes, thereby triggering the onset of content release. This paper describes the synthesis of CVEP via a six-step sequence starting from the readily available precursors 1,4-butanediol, cholesterol, and mPEG acid. The hydrolysis rates and release kinetics from CVEP/DOPE liposome dispersions as a function of CVEP loading, as well as the cryogenic transmission electron microscopy and pH-dependent monolayer properties of 9:91 CVEP/DOPE mixtures, also are reported. When folate receptor-positive KB cells were exposed to calcein-loaded 5:95 CVEP/DOPE liposomes containing 0.1 mol % folate-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-polyethylene[76] glycolamide (folate-PEG-DSPE), delivery of the calcein cargo to the cytoplasm of the cells was observed as determined by fluorescence microscopy and flow cytometry. Fluorescence resonance energy transfer analysis of lipid mixing in these cells was consistent with membrane-membrane fusion between the liposome and endosomal membranes.


Assuntos
Colesterol , Citoplasma/metabolismo , Fluoresceínas/administração & dosagem , Lipossomos/farmacocinética , Polietilenoglicóis , Compostos de Vinila , Transferência Ressonante de Energia de Fluorescência , Humanos , Cinética
5.
PLoS One ; 7(6): e38990, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22720010

RESUMO

Specialized trafficking systems in eukaryotic cells serve a critical role in partitioning intracellular proteins between the nucleus and cytoplasm. Cytoplasmic proteins (including chromatin remodeling enzymes and transcription factors) must gain access to the nucleus to exert their functions to properly program fundamental cellular events ranging from cell cycle progression to gene transcription. Knowing that nuclear import mediated by members of the karyopherin α family of transport receptors plays a critical role in regulating development and differentiation, we wanted to determine the identity of proteins that are trafficked by this karyopherin α pathway. To this end, we performed a GST pull-down assay using porcine orthologs of karyopherin α1 (KPNA1) and karyopherin α7 (KPNA7) and prey protein derived from porcine fibroblast cells and used a liquid chromatography and tandem mass spectrometry (LC-MS/MS) approach to determine the identity of KPNA1 and KPNA7 interacting proteins. Our screen revealed that the proteins that interact with KPNA1 and KPNA7 are generally nuclear proteins that possess nuclear localization signals. We further validated two candidate proteins from this screen and showed that they are able to be imported into the nucleus in vivo and also interact with members of the karyopherin α family of proteins in vitro. Our results also reveal the utility of using a GST pull-down approach coupled with LC-MS/MS to screen for protein interaction partners in a non-traditional model system.


Assuntos
Proteínas/metabolismo , alfa Carioferinas/metabolismo , Animais , Cromatografia Líquida , Corantes Fluorescentes , Ligação Proteica , Suínos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA