Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1296580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149246

RESUMO

Introduction: Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen Borrelia burgdorferi (Bb). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with Bb reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease. Methods: In this study, we used single-cell RNA-Seq analysis in conjunction with mouse genomics exploiting GFP-expressing Bb to sort GFP+ splenocytes and GFP- bystander cells to uncover novel molecular and cellular signatures that contribute to early stages of immune responses against Bb. Results: These data decoded the heterogeneity of splenic neutrophils, macrophages, NK cells, B cells, and T cells in C3H/HeN mice in response to Bb infection. Increased mRNA abundance of apoptosis-related genes was observed in neutrophils and macrophages clustered from GFP+ splenocytes. Moreover, complement-mediated phagocytosis-related genes such as C1q and Ficolin were elevated in an inflammatory macrophage subset, suggesting upregulation of these genes during the interaction of macrophages with Bb-infected neutrophils. In addition, the role of DUSP1 in regulating the expression of Casp3 and pro-inflammatory cytokines Cxcl1, Cxcl2, Il1b, and Ccl5 in Bb-infected neutrophils were identified. Discussion: These findings serve as a growing catalog of cell phenotypes/biomarkers among murine splenocytes that can be exploited for limiting spirochetal burden to limit the transmission of the agent of Lyme disease to humans via reservoir hosts.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Camundongos , Humanos , Animais , Borrelia burgdorferi/genética , Transcriptoma , Baço , Análise da Expressão Gênica de Célula Única , Camundongos Endogâmicos C3H , Doença de Lyme/genética
2.
Curr Protoc ; 1(3): e61, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33661557

RESUMO

Transformation techniques used to genetically manipulate Borrelia burgdorferi, the agent of Lyme disease, play a critical role in generating mutants that facilitate analyses of the role of genes in the pathophysiology of this bacterium. A number of borrelial mutants have been successfully isolated and characterized since the first electrotransformation procedure was established 25 years ago (Samuels, 1995). This article is directed at additional considerations for transforming infectious B. burgdorferi to generate strains retaining the plasmid profile of the parental strain, enabling analysis of transformants for in vitro and in vivo phenotypes. These methods are built on previously published protocols and are intended to add steps and tips to enhance transformation efficiency and recovery of strains amenable for studies involving colonization, survival, and transmission of B. burgdorferi during the vector and vertebrate phases of infection. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of stock cultures, propagation of spirochetes, and analysis of plasmid profiles Basic Protocol 2: Preparation of plasmid and linear DNA templates for transformation Basic Protocol 3: Transformation of B. burgdorferi Basic Protocol 4: Antibiotic selection of borrelial transformants Basic Protocol 5: Isolation of borrelial transformants in agar overlays Basic Protocol 6: Complementation of mutant borrelial strains in cis or in trans.


Assuntos
Borrelia burgdorferi , Doença de Lyme , Borrelia burgdorferi/genética , Humanos , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA