Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(10): e56, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37026474

RESUMO

Although splicing occurs largely co-transcriptionally, the order by which introns are removed does not necessarily follow the order in which they are transcribed. Whereas several genomic features are known to influence whether or not an intron is spliced before its downstream neighbor, multiple questions related to adjacent introns' splicing order (AISO) remain unanswered. Here, we present Insplico, the first standalone software for quantifying AISO that works with both short and long read sequencing technologies. We first demonstrate its applicability and effectiveness using simulated reads and by recapitulating previously reported AISO patterns, which unveiled overlooked biases associated with long read sequencing. We next show that AISO around individual exons is remarkably constant across cell and tissue types and even upon major spliceosomal disruption, and it is evolutionarily conserved between human and mouse brains. We also establish a set of universal features associated with AISO patterns across various animal and plant species. Finally, we used Insplico to investigate AISO in the context of tissue-specific exons, particularly focusing on SRRM4-dependent microexons. We found that the majority of such microexons have non-canonical AISO, in which the downstream intron is spliced first, and we suggest two potential modes of SRRM4 regulation of microexons related to their AISO and various splicing-related features. Insplico is available on gitlab.com/aghr/insplico.


Assuntos
Genoma , Splicing de RNA , Animais , Camundongos , Humanos , Íntrons/genética , RNA-Seq , Splicing de RNA/genética , Spliceossomos/genética , Processamento Alternativo , Proteínas do Tecido Nervoso/genética
2.
Mol Med ; 27(1): 105, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34503440

RESUMO

BACKGROUND: Vaccination programs have been launched worldwide to halt the spread of COVID-19. However, the identification of existing, safe compounds with combined treatment and prophylactic properties would be beneficial to individuals who are waiting to be vaccinated, particularly in less economically developed countries, where vaccine availability may be initially limited. METHODS: We used a data-driven approach, combining results from the screening of a large transcriptomic database (L1000) and molecular docking analyses, with in vitro tests using a lung organoid model of SARS-CoV-2 entry, to identify drugs with putative multimodal properties against COVID-19. RESULTS: Out of thousands of FDA-approved drugs considered, we observed that atorvastatin was the most promising candidate, as its effects negatively correlated with the transcriptional changes associated with infection. Atorvastatin was further predicted to bind to SARS-CoV-2's main protease and RNA-dependent RNA polymerase, and was shown to inhibit viral entry in our lung organoid model. CONCLUSIONS: Small clinical studies reported that general statin use, and specifically, atorvastatin use, are associated with protective effects against COVID-19. Our study corroborrates these findings and supports the investigation of atorvastatin in larger clinical studies. Ultimately, our framework demonstrates one promising way to fast-track the identification of compounds for COVID-19, which could similarly be applied when tackling future pandemics.


Assuntos
Antivirais/farmacologia , Atorvastatina/farmacologia , Tratamento Farmacológico da COVID-19 , Pulmão/efeitos dos fármacos , Organoides/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Atorvastatina/química , COVID-19/prevenção & controle , Linhagem Celular , Proteases 3C de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/química , Doxiciclina/farmacologia , Aprovação de Drogas , Reposicionamento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/virologia , Modelos Biológicos , Simulação de Acoplamento Molecular , Organoides/virologia , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Trifluoperazina/química , Trifluoperazina/farmacologia , Estados Unidos , United States Food and Drug Administration , Vesiculovirus/genética , Internalização do Vírus/efeitos dos fármacos
3.
BMC Genomics ; 18(1): 650, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830361

RESUMO

BACKGROUND: The vast diversification of proteins in eukaryotic cells has been related with multiple transcript isoforms from a single gene that result in alternative splicing (AS) of primary transcripts. Analysis of RNA sequencing data from expressed sequence tags and next generation RNA sequencing has been crucial for AS identification and genome-wide AS studies. For the identification of AS events from the related legume species Phaseolus vulgaris and Glycine max, 157 and 88 publicly available RNA-seq libraries, respectively, were analyzed. RESULTS: We identified 85,570 AS events from P. vulgaris in 72% of expressed genes and 134,316 AS events in 70% of expressed genes from G. max. These were categorized in seven AS event types with intron retention being the most abundant followed by alternative acceptor and alternative donor, representing ~75% of all AS events in both plants. Conservation of AS events in homologous genes between the two species was analyzed where an overrepresentation of AS affecting 5'UTR regions was observed for certain types of AS events. The conservation of AS events was experimentally validated for 8 selected genes, through RT-PCR analysis. The different types of AS events also varied by relative position in the genes. The results were consistent in both species. CONCLUSIONS: The identification and analysis of AS events are first steps to understand their biological relevance. The results presented here from two related legume species reveal high conservation, over ~15-20 MY of divergence, and may point to the biological relevance of AS.


Assuntos
Processamento Alternativo/genética , Glycine max/genética , Phaseolus/genética , Sequência Conservada , Regulação da Expressão Gênica de Plantas
7.
Plant Physiol ; 168(1): 273-91, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739700

RESUMO

Micro-RNAs are recognized as important posttranscriptional regulators in plants. The relevance of micro-RNAs as regulators of the legume-rhizobia nitrogen-fixing symbiosis is emerging. The objective of this work was to functionally characterize the role of micro-RNA172 (miR172) and its conserved target APETALA2 (AP2) transcription factor in the common bean (Phaseolus vulgaris)-Rhizobium etli symbiosis. Our expression analysis revealed that mature miR172c increased upon rhizobial infection and continued increasing during nodule development, reaching its maximum in mature nodules and decaying in senescent nodules. The expression of AP2-1 target showed a negative correlation with miR172c expression. A drastic decrease in miR172c and high AP2-1 mRNA levels were observed in ineffective nodules. Phenotypic analysis of composite bean plants with transgenic roots overexpressing miR172c or a mutated AP2-1 insensitive to miR172c cleavage demonstrated the pivotal regulatory role of the miR172 node in the common bean-rhizobia symbiosis. Increased miR172 resulted in improved root growth, increased rhizobial infection, increased expression of early nodulation and autoregulation of nodulation genes, and improved nodulation and nitrogen fixation. In addition, these plants showed decreased sensitivity to nitrate inhibition of nodulation. Through transcriptome analysis, we identified 114 common bean genes that coexpressed with AP2-1 and proposed these as being targets for transcriptional activation by AP2-1. Several of these genes are related to nodule senescence, and we propose that they have to be silenced, through miR172c-induced AP2-1 cleavage, in active mature nodules. Our work sets the basis for exploring the miR172-mediated improvement of symbiotic nitrogen fixation in common bean, the most important grain legume for human consumption.


Assuntos
Fixação de Nitrogênio , Phaseolus/microbiologia , Phaseolus/fisiologia , Proteínas de Plantas/metabolismo , Rhizobium etli/fisiologia , Simbiose , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genes de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Modelos Biológicos , Nitratos/farmacologia , Fixação de Nitrogênio/efeitos dos fármacos , Fixação de Nitrogênio/genética , Phaseolus/efeitos dos fármacos , Phaseolus/genética , Proteínas de Plantas/genética , Nodulação/efeitos dos fármacos , Nodulação/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Isoformas de Proteínas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rhizobium etli/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Simbiose/genética
8.
BMC Genomics ; 15: 866, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25283805

RESUMO

BACKGROUND: Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. RESULTS: Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. CONCLUSIONS: These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.


Assuntos
Bases de Dados Genéticas , Phaseolus/genética , Proteínas de Plantas/genética , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Phaseolus/crescimento & desenvolvimento , Raízes de Plantas/genética , RNA de Plantas/genética , Glycine max/genética , Navegador
9.
Nat Ecol Evol ; 8(6): 1140-1153, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622362

RESUMO

Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.


Assuntos
Evolução Molecular , Insetos , Vertebrados , Animais , Insetos/genética , Vertebrados/genética , Especificidade de Órgãos , Transcriptoma , Filogenia
10.
BMC Plant Biol ; 13: 26, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23402340

RESUMO

BACKGROUND: TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. RESULTS: Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the expression of some P-responsive genes; this process could be mediated by JA-signaling. CONCLUSION: Our work contributes to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors in the JA signaling pathway. In addition, we propose that the JA-signaling pathway involving PvTIFY genes might play a role in regulating the plant response/adaptation to P-starvation.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Phaseolus/metabolismo , Fósforo/deficiência , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética
11.
Physiol Plant ; 149(3): 389-407, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23432573

RESUMO

Several environmental stresses generate high amounts of reactive oxygen species (ROS) in plant cells, resulting in oxidative stress. Symbiotic nitrogen fixation (SNF) in the legume-rhizobia symbiosis is sensitive to damage from oxidative stress. Active nodules of the common bean (Phaseolus vulgaris) exposed to the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride hydrate), which stimulates ROS accumulation, exhibited reduced nitrogenase activity and ureide content. We analyzed the global gene response of nodules subjected to oxidative stress using the Bean Custom Array 90K, which includes probes from 30,000 expressed sequence tags (ESTs). A total of 4280 ESTs were differentially expressed in stressed bean nodules; of these, 2218 were repressed. Based on Gene Ontology analysis, these genes were grouped into 42 different biological process categories. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic pathways related to carbon/nitrogen metabolism, which is crucial for nodule function. Quantitative reverse transcription (qRT)-PCR analysis of transcription factor (TF) gene expression showed that 67 TF genes were differentially expressed in nodules exposed to oxidative stress. Putative cis-elements recognized by highly responsive TF were detected in promoter regions of oxidative stress regulated genes. The expression of oxidative stress responsive genes and of genes important for SNF in bacteroids analyzed in stressed nodules revealed that these conditions elicited a transcriptional response.


Assuntos
Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Phaseolus/genética , Nódulos Radiculares de Plantas/genética , Fatores de Transcrição/genética , Perfilação da Expressão Gênica , Análise de Sequência com Séries de Oligonucleotídeos , Estresse Oxidativo/genética , Paraquat , Phaseolus/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium tropici/genética , Rhizobium tropici/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose
12.
Nat Metab ; 5(2): 219-236, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36759540

RESUMO

Pancreatic islets control glucose homeostasis by the balanced secretion of insulin and other hormones, and their abnormal function causes diabetes or hypoglycaemia. Here we uncover a conserved programme of alternative microexons included in mRNAs of islet cells, particularly in genes involved in vesicle transport and exocytosis. Islet microexons (IsletMICs) are regulated by the RNA binding protein SRRM3 and represent a subset of the larger neural programme that are particularly sensitive to SRRM3 levels. Both SRRM3 and IsletMICs are induced by elevated glucose levels, and depletion of SRRM3 in human and rat beta cell lines and mouse islets, or repression of particular IsletMICs using antisense oligonucleotides, leads to inappropriate insulin secretion. Consistently, mice harbouring mutations in Srrm3 display defects in islet cell identity and function, leading to hyperinsulinaemic hypoglycaemia. Importantly, human genetic variants that influence SRRM3 expression and IsletMIC inclusion in islets are associated with fasting glucose variation and type 2 diabetes risk. Taken together, our data identify a conserved microexon programme that regulates glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Células Secretoras de Insulina , Ratos , Camundongos , Humanos , Animais , Células Secretoras de Insulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Secreção de Insulina , Glucose/metabolismo , Hipoglicemia/metabolismo , Homeostase/fisiologia
13.
bioRxiv ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38234829

RESUMO

Single cell RNA sequencing (scRNA-seq) is revolutionizing the study of complex biological systems. However, most sequencing studies overlook the contribution of transposable element (TE) expression to the transcriptome. In both scRNA-seq and bulk tissue RNA sequencing (RNA-seq), quantification of TE expression is challenging due to repetitive sequence content and poorly characterized TE gene models. Here, we developed a tool and analysis pipeline for Single cell Transposable Element Locus Level Analysis of scRNA Sequencing (Stellarscope) that reassigns multi-mapped reads to specific genomic loci using an expectation-maximization algorithm. Using Stellarscope, we built an atlas of TE expression in human PBMCs. We found that locus-specific TEs delineate cell types and define new cell subsets not identified by standard mRNA expression profiles. Altogether, this study provides comprehensive insights into the influence of transposable elements in human biology.

14.
BMC Genomics ; 13: 83, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22394504

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are endogenously encoded small RNAs that post-transcriptionally regulate gene expression. MiRNAs play essential roles in almost all plant biological processes. Currently, few miRNAs have been identified in the model food legume Phaseolus vulgaris (common bean). Recent advances in next generation sequencing technologies have allowed the identification of conserved and novel miRNAs in many plant species. Here, we used Illumina's sequencing by synthesis (SBS) technology to identify and characterize the miRNA population of Phaseolus vulgaris. RESULTS: Small RNA libraries were generated from roots, flowers, leaves, and seedlings of P. vulgaris. Based on similarity to previously reported plant miRNAs,114 miRNAs belonging to 33 conserved miRNA families were identified. Stem-loop precursors and target gene sequences for several conserved common bean miRNAs were determined from publicly available databases. Less conserved miRNA families and species-specific common bean miRNA isoforms were also characterized. Moreover, novel miRNAs based on the small RNAs were found and their potential precursors were predicted. In addition, new target candidates for novel and conserved miRNAs were proposed. Finally, we studied organ-specific miRNA family expression levels through miRNA read frequencies. CONCLUSIONS: This work represents the first massive-scale RNA sequencing study performed in Phaseolus vulgaris to identify and characterize its miRNA population. It significantly increases the number of miRNAs, precursors, and targets identified in this agronomically important species. The miRNA expression analysis provides a foundation for understanding common bean miRNA organ-specific expression patterns. The present study offers an expanded picture of P. vulgaris miRNAs in relation to those of other legumes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , MicroRNAs/genética , Phaseolus/genética , RNA de Plantas/genética , Análise de Sequência de RNA/métodos , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Isoformas de RNA/genética , Precursores de RNA/genética
15.
Viruses ; 14(7)2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891551

RESUMO

Many drugs have been evaluated to reactivate HIV-1 from cellular reservoirs, but the off-target effects of these latency reversal agents (LRA) remain poorly defined. Transposable elements (TEs) are reactivated during HIV-1 infection, but studies of potential off-target drug effects on TE expression have been limited. We analyzed the differential expression of TEs induced by canonical and non-canonical NF-κB signaling. We evaluated the effect of PKC agonists (Bryostatin and Ingenol B) on the expression of TEs in memory CD4+ T cells. Ingenol B induced 38 differentially expressed TEs (17 HERV (45%) and 21 L1 (55%)). Interestingly, TE expression in effector memory CD4+ T cells was more affected by Bryostatin compared to other memory T-cell subsets, with 121 (107 upregulated and 14 downregulated) differentially expressed (DE) TEs. Of these, 31% (n = 37) were HERVs, and 69% (n = 84) were LINE-1 (L1). AZD5582 induced 753 DE TEs (406 HERV (54%) and 347 L1 (46%)). Together, our findings show that canonical and non-canonical NF-κB signaling activation leads to retroelement expressions as an off-target effect. Furthermore, our data highlights the importance of exploring the interaction between LRAs and the expression of retroelements in the context of HIV-1 eradication strategies.


Assuntos
Elementos de DNA Transponíveis , Infecções por HIV , Soropositividade para HIV , NF-kappa B , Latência Viral , Briostatinas/farmacologia , Linfócitos T CD4-Positivos/metabolismo , Diterpenos/farmacologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , HIV-1 , Humanos , NF-kappa B/metabolismo , Ativação Viral
16.
JCI Insight ; 6(24)2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34731091

RESUMO

SARS-CoV-2 promotes an imbalanced host response that underlies the development and severity of COVID-19. Infections with viruses are known to modulate transposable elements (TEs), which can exert downstream effects by modulating host gene expression, innate immune sensing, or activities encoded by their protein products. We investigated the impact of SARS-CoV-2 infection on TE expression using RNA-Seq data from cell lines and from primary patient samples. Using a bioinformatics tool, Telescope, we showed that SARS-CoV-2 infection led to upregulation or downregulation of TE transcripts, a subset of which differed from cells infected with SARS, Middle East respiratory syndrome coronavirus (MERS-CoV or MERS), influenza A virus (IAV), respiratory syncytial virus (RSV), and human parainfluenza virus type 3 (HPIV3). Differential expression of key retroelements specifically identified distinct virus families, such as Coronaviridae, with unique retroelement expression subdividing viral species. Analysis of ChIP-Seq data showed that TEs differentially expressed in SARS-CoV-2 infection were enriched for binding sites for transcription factors involved in immune responses and for pioneer transcription factors. In samples from patients with COVID-19, there was significant TE overexpression in bronchoalveolar lavage fluid and downregulation in PBMCs. Thus, although the host gene transcriptome is altered by infection with SARS-CoV-2, the retrotranscriptome may contain the most distinctive features of the cellular response to SARS-CoV-2 infection.


Assuntos
COVID-19/genética , Retrovirus Endógenos/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Células A549 , Linhagem Celular , Sequenciamento de Cromatina por Imunoprecipitação , Biologia Computacional , Infecções por Coronavirus/genética , Elementos de DNA Transponíveis/genética , Regulação para Baixo , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Técnicas In Vitro , Vírus da Influenza A , Influenza Humana/genética , Coronavírus da Síndrome Respiratória do Oriente Médio , Vírus da Parainfluenza 3 Humana , RNA-Seq , Infecções por Vírus Respiratório Sincicial/genética , Vírus Sinciciais Respiratórios , Infecções por Respirovirus/genética , Retroelementos/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/genética , Transcriptoma , Regulação para Cima
17.
Cancer Res ; 81(13): 3449-3460, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33941616

RESUMO

Human endogenous retroviruses (HERV) have been implicated in a variety of diseases including cancers. Recent research implicates HERVs in epigenetic gene regulation. Here we utilize a recently developed bioinformatics tool for identifying HERV expression at the locus-specific level to identify differential expression of HERVs in matched tumor-normal RNA-sequencing (RNA-seq) data from The Cancer Genome Atlas. Data from 52 prostate cancer, 111 breast cancer, and 24 colon cancer cases were analyzed. Locus-specific analysis identified active HERV elements and differentially expressed HERVs in prostate cancer, breast cancer, and colon cancer. In addition, differentially expressed host genes were identified across prostate, breast, and colon cancer datasets, respectively, including several involved in demethylation and antiviral response pathways, supporting previous findings regarding the pathogenic mechanisms of HERVs. A majority of differentially expressed HERVs intersected protein coding genes or lncRNAs in each dataset, and a subset of differentially expressed HERVs intersected differentially expressed genes in prostate, breast, and colon cancers, providing evidence towards regulatory function. Finally, patterns in HERV expression were identified in multiple cancer types, with 155 HERVs differentially expressed in all three cancer types. This analysis extends previous results identifying HERV transcription in cancer RNA-seq datasets to a locus-specific level, and in doing so provides a foundation for future studies investigating the functional role of HERV in cancers and identifies a number of novel targets for cancer biomarkers and immunotherapy. SIGNIFICANCE: Expressed human endogenous retroviruses are mapped at locus-specific resolution and linked to specific pathways to identify potential biomarkers and therapeutic targets in prostate, breast, and colon cancers.


Assuntos
Neoplasias da Mama/genética , Neoplasias do Colo/genética , Retrovirus Endógenos/genética , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Neoplasias da Próstata/genética , Proteínas Virais/genética , Neoplasias da Mama/virologia , Estudos de Casos e Controles , Neoplasias do Colo/virologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/virologia , Análise de Sequência de RNA
18.
Front Oncol ; 10: 553983, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194615

RESUMO

In people living with HIV (PLWH), chronic inflammation can lead to cancer initiation and progression, besides driving a dysregulated and diminished immune responsiveness. HIV infection also leads to increased transcription of Human Endogenous Retroviruses (HERVs), which could increase an inflammatory environment and create a tumor growth suppressive environment with high expression of pro-inflammatory cytokines. In order to determine the impact of HIV infection to HERV expression on the breast cancer microenvironment, we sequenced total RNA from formalin-fixed paraffin-embedded (FFPE) breast cancer samples of women HIV-negative and HIV-positive for transcriptome and retrotranscriptome analyses. We performed RNA extraction from FFPE samples, library preparation and total RNA sequencing (RNA-seq). The RNA-seq analysis shows 185 differentially expressed genes: 181 host genes (178 upregulated and three downregulated) and four upregulated HERV transcripts in HIV-positive samples. We also explored the impact of HERV expression in its neighboring breast cancer development genes (BRCA1, CCND1, NBS1/NBN, RAD50, KRAS, PI3K/PIK3CA) and in long non-coding RNA expression (AC060780.1, also known as RP11-242D8.1). We found a significant positive association of HERV expression with RAD50 and with AC060780.1, which suggest a possible role of HERV in regulating breast cancer genes from PLWH with breast cancer. In addition, we found immune system, extracellular matrix organization and metabolic signaling genes upregulated in HIV-positive breast cancer. In conclusion, our findings provide evidence of transcriptional and retrotranscriptional changes in breast cancer from PLWH compared to non-HIV breast cancer, including dysregulation of HERVs, suggesting an indirect effect of the virus on the breast cancer microenvironment.

19.
Front Genet ; 8: 14, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28261262

RESUMO

The protein diversity that exists today has resulted from various evolutionary processes. It is well known that gene duplication (GD) along with the accumulation of mutations are responsible, among other factors, for an increase in the number of different proteins. The gene structure in eukaryotes requires the removal of non-coding sequences, introns, to produce mature mRNAs. This process, known as cis-splicing, referred to here as splicing, is regulated by several factors which can lead to numerous splicing arrangements, commonly designated as alternative splicing (AS). AS, producing several transcripts isoforms form a single gene, also increases the protein diversity. However, the evolution and manner for increasing protein variation differs between AS and GD. An important question is how are patterns of AS affected after a GD event. Here, we review the current knowledge of AS and GD, focusing on their evolutionary relationship. These two processes are now considered the main contributors to the increasing protein diversity and therefore their relationship is a relevant, yet understudied, area of evolutionary study.

20.
Plant Signal Behav ; 10(10): e1062957, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26211831

RESUMO

The intricate regulatory network for floral organogenesis in plants that includes AP2/ERF, SPL and AGL transcription factors, miR172 and miR156 along with other components is well documented, though its complexity and size keep increasing. The miR172/AP2 node was recently proposed as essential regulator in the legume-rhizobia nitrogen-fixing symbiosis. Research from our group contributed to demonstrate the control of common bean (Phaseolus vulgaris) nodulation by miR172c/AP2-1, however no other components of such regulatory network have been reported. Here we propose AGLs as new protagonists in the regulation of common bean nodulation and discuss the relevance of future deeper analysis of the complex AP2 regulatory network for nodule organogenesis in legumes.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , MicroRNAs/metabolismo , Phaseolus/genética , Nodulação/genética , Simbiose , Fatores de Transcrição/metabolismo , Genes de Plantas , Proteínas de Domínio MADS/metabolismo , Fixação de Nitrogênio , Phaseolus/metabolismo , Phaseolus/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Rhizobium
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA