Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Bot ; 64(5): 1305-16, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23505311

RESUMO

This study tested the hypotheses that: (i) genetic variation in Rubisco turnover may exist in perennial ryegrass (Lolium perenne L.); (ii) such variation might affect nitrogen use efficiency and plant yield; and (iii) genetic control of Rubisco turnover might be amenable to identification by quantitative trait loci (QTL) mapping. A set of 135 full-sib F1 perennial ryegrass plants derived from a pair cross between genotypes from the cultivars 'Grasslands Impact' and 'Grasslands Samson' was studied to test these hypotheses. Leaf Rubisco concentration at different leaf ages was measured and modelled as a log-normal curve described by three mathematical parameters: D (peak Rubisco concentration), G (time of D), and F (curve standard deviation). Herbage dry matter (DM) yield and morphological traits (tiller weight (TW), tiller number (TN), leaf lamina length (LL), and an index of competitive ability (PI)) were also measured. The progeny exhibited continuous variation for all traits. Simple correlation and principal component analyses indicated that plant productivity was associated with peak Rubisco concentration and not Rubisco turnover. Lower DM was associated with higher leaf Rubisco concentration indicating that Rubisco turnover effects on plant productivity may relate to energy cost of Rubisco synthesis rather than photosynthetic capacity. QTL detection by a multiple QTL model identified seven significant QTL for Rubisco turnover and nine QTL for DM and morphological traits. An indication of the genetic interdependence of DM and the measures of Rubisco turnover was the support interval overlap involving QTL for D and QTL for TN on linkage group 5 in a cluster involving QTL for DM and PI. In this region, alleles associated with increased TN, DM, and PI were associated with decreased D, indicating that this region may regulate Rubisco concentration and plant productivity via increased tillering. A second cluster involving QTL for LL, TN, PI and DM was found on linkage group 2. The two clusters represent marker-trait associations that might be useful for marker-assisted plant breeding applications. In silico comparative analysis indicated conservation of the genetic loci controlling Rubisco concentration in perennial ryegrass and rice.


Assuntos
Mapeamento Cromossômico , Variação Genética , Lolium/anatomia & histologia , Lolium/genética , Folhas de Planta/enzimologia , Locos de Características Quantitativas/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Simulação por Computador , Genoma de Planta/genética , Padrões de Herança/genética , Lolium/enzimologia , Lolium/crescimento & desenvolvimento , Oryza/genética , Fenótipo , Análise de Componente Principal , Característica Quantitativa Herdável
2.
Ann Bot ; 106(6): 1027-35, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20929898

RESUMO

BACKGROUND AND AIMS: Seed germination is negatively affected by salinity, which is thought to be due to both osmotic and ion-toxicity effects. We hypothesize that salt is absorbed by seeds, allowing them to generate additional osmotic potential, and to germinate in conditions under which they would otherwise not be able to germinate. METHODS: Seeds of barley, Hordeum vulgare, were germinated in the presence of either pure water or one of five iso-osmotic solutions of polyethylene-glycol (PEG) or NaCl at 5, 12, 20 or 27 °C. Germination time courses were recorded and germination indices were calculated. Dry mass, water content and sodium concentration of germinating and non-germinating seeds in the NaCl treatments at 12 °C were measured. Fifty supplemental seeds were used to evaluate the changes in seed properties with time. KEY RESULTS: Seeds incubated in saline conditions were able to germinate at lower osmotic potentials than those incubated in iso-osmotic PEG solutions and generally germinated faster. A positive correlation existed between external salinity and seed salt content in the saline-incubated seeds. Water content and sodium concentration increased with time for seeds incubated in NaCl. At higher temperatures, germination percentage and dry mass decreased whereas germination index and sodium concentration increased. CONCLUSIONS: The results suggest that barley seeds can take up sodium, allowing them to generate additional osmotic potential, absorb more water and germinate more rapidly in environments of lower water potential. This may have ecological implications, allowing halophytic species and varieties to out-compete glycophytes in saline soils.


Assuntos
Germinação/fisiologia , Hordeum/efeitos dos fármacos , Hordeum/fisiologia , Pressão Osmótica , Salinidade , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/fisiologia , Cloreto de Sódio/farmacologia
3.
J Exp Bot ; 60(7): 2191-202, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19380423

RESUMO

The Lc petunia system, which displays enhanced, light-induced vegetative pigmentation, was used to investigate how high light affects anthocyanin biosynthesis, and to assess the effects of anthocyanin pigmentation upon photosynthesis. Lc petunia plants displayed intense purple anthocyanin pigmentation throughout the leaves and stems when grown under high-light conditions, yet remain acyanic when grown under shade conditions. The coloured phenotypes matched with an accumulation of anthocyanins and flavonols, as well as the activation of the early and late flavonoid biosynthetic genes required for flavonol and anthocyanin production. Pigmentation in Lc petunia only occurred under conditions which normally induce a modest amount of anthocyanin to accumulate in wild-type Mitchell petunia [Petunia axillaris x (Petunia axillaris x Petunia hybrida cv. 'Rose of Heaven')]. Anthocyanin pigmentation in Lc petunia leaves appears to screen underlying photosynthetic tissues, increasing light saturation and light compensation points, without reducing the maximal photosynthetic assimilation rate (A(max)). In the Lc petunia system, where the bHLH factor Leaf colour is constitutively expressed, expression of the bHLH (Lc) and WD40 (An11) components of the anthocyanin regulatory system were not limited, suggesting that the high-light-induced anthocyanin pigmentation is regulated by endogenous MYB transcription factors.


Assuntos
Antocianinas/biossíntese , Petunia/metabolismo , Petunia/efeitos da radiação , Pigmentação/efeitos da radiação , Antocianinas/química , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Cinética , Luz , Petunia/química , Petunia/genética , Fotossíntese/efeitos da radiação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plants (Basel) ; 8(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159192

RESUMO

Infection by holoparasitic plants typically causes decreases in host mass, thought to be primarily as a result of resource abstraction. Inverse relationships have been noted between the number of Orobanche spp. parasites infecting a host and their mass, suggesting that the parasites compete for a shared resource pool, assumed to be recently fixed carbon (C). In clover, nitrogen (N) fixation requires a high proportion of daily photosynthate and represents a potential competitor for recently fixed C. We grew Trifolium pratense, either singly or parasitised by Orobanche minor, under high or low light levels, and with or without exogenous N supply. Low light and N deficiency led to decreased host biomass, while the damage caused by parasitism was proportionate to host mass. Parasitism caused reductions in host leaf mass, area, photosynthetic rates and shoot N concentration, but did not affect starch accumulation. Parasite mass as a proportion of system biomass was significantly higher when attached to plants grown at high light, which was attributed to higher photoassimilate supply, while the N supply had no effect. While both N limitation and parasitism caused reductions in host growth, little evidence of competition for C between N fixation and the parasites was noted.

5.
J Plant Physiol ; 234-235: 54-59, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30665048

RESUMO

Nutrients are heterogeneously distributed in the soil environment. Plants have evolved a variety of mechanisms to maximise their ability to compete for limited resources, with differential root growth considered among the more important mechanisms. Despite the significant costs of root growth, little data is available regarding carbon (C) allocation to roots growing in heterogeneous conditions. Here, we investigate the allocation of recently assimilated C in Poa annua plants growing in uniform or heterogeneous nutrient conditions. In the first experiment we grew plants in split-root boxes, providing N either equally between the two chambers (0.5 mg/0.5 mg, 8 mg/8 mg) or with one side receiving more N (0.5 mg/8 mg, 8 mg/0.5 mg), and quantified C allocation and N uptake using 13CO2 and K15NO3. Where N was supplied equally to the two chambers, C was allocated equally to the roots irrespective of the total N supply. However, the 13C label was preferentially allocated (60:40) to high-N roots in the unequal treatments. N uptake was a function of local supply and was not affected by N supply to the roots in the other chamber. C allocation had no discernible effect on N uptake. In the second experiment, we tested whether differential N supply would lead to increased root growth in the high-N side. In this experiment, equal amounts of N were supplied to all plants as ammonium, with half receiving an equal distribution to the two root chambers (50/50), while the other half received an unequal supply (94/6). While no difference in root growth was noted in 50/50 plants, a 60:40 mass allocation was noted from day six onwards in plants receiving the 94/6 N supply. Despite increased root growth in the high-N side, the plants receiving the 94/6 treatment could not achieve the same shoot mass or N concentration as the 50/50 plants. No difference in total C allocation to the roots between treatments was noted in the first experiment, and no difference in total root mass between treatments was found in the second experiment, suggesting that root C supply was source-limited, while allocation to specific roots was strongly influenced by sink strength. Differential C allocation appears to be an important pre-requisite for increased root growth in N-rich patches.


Assuntos
Carbono/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Poa/metabolismo , Isótopos de Carbono , Isótopos de Nitrogênio , Poa/crescimento & desenvolvimento
6.
Ann Bot ; 101(4): 573-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18211886

RESUMO

BACKGROUND AND AIMS: Parasitism is well understood to have wide-ranging deleterious effects on host performance in species thus far characterized. Photosynthetic performance reductions have been noted in the Striga-Zea mays association; however, no such information exists for facultative hemiparasitic plants and their hosts, nor are the effects of host species understood. METHODS: Chlorophyll fluorimetry was used to study the effects of parasitism by the hemiparasite Rhinanthus minor on the grass Phleum bertolinii and the forb Plantago lanceolata, and the effects of host species on the photosynthetic apparatus of R. minor. KEY RESULTS: Parasitism by Rhinanthus led to a significant decrease in the host, and total (host + parasite) biomass in Phleum; however, in Plantago, no significant repression of growth was noted. Maximum quantum yield (F(v)/F(m)) was reduced in parasitized Plantago, relative to control plants, but not in Phleum. F(v)/F(m) was significantly lower in R. minor parasitizing Phleum than Plantago, suggesting Phleum to be a superior host to Plantago for R. minor. Steady-state quantum yield (Phi(PSII)) was significantly depressed in parasitized Phleum, but only at low irradiances in Plantago. Phi(PSII) was very low for R. minor grown on Plantago, but not Phleum. CONCLUSIONS: Shown here is the first evidence of the suppression of host photosynthesis by a facultative hemiparasitic plant, which has significant effects on total biomass production. Host identity is a significant factor in parasite success, with the forb Plantago lanceolata exhibiting apparent chemical as well as previously identified physical defences to parasitism. It is proposed that the electron transport rate (as denoted by Phi(PSII)) represents the limiting factor for biomass accumulation in this system, and that Plantago is able to suppress the growth of Rhinanthus by suppressing the electron transport rate.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Phleum/metabolismo , Fotossíntese/fisiologia , Plantago/metabolismo , Clorofila/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA