Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 292(20): 8390-8400, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28348077

RESUMO

Filamin-mediated linkages between transmembrane receptors (TR) and the actin cytoskeleton are crucial for regulating many cytoskeleton-dependent cellular processes such as cell shape change and migration. A major TR binding site in the immunoglobulin repeat 21 (Ig21) of filamin is masked by the adjacent repeat Ig20, resulting in autoinhibition. The TR binding to this site triggers the relief of Ig20 and protein kinase A (PKA)-mediated phosphorylation of Ser-2152, thereby dynamically regulating the TR-actin linkages. A P2204L mutation in Ig20 reportedly cause frontometaphyseal dysplasia, a skeletal disorder with unknown pathogenesis. We show here that the P2204L mutation impairs a hydrophobic core of Ig20, generating a conformationally fluctuating molten globule-like state. Consequently, unlike in WT filamin, where PKA-mediated Ser-2152 phosphorylation is ligand-dependent, the P2204L mutant is readily accessible to PKA, promoting ligand-independent phosphorylation on Ser-2152. Strong TR peptide ligands from platelet GP1bα and G-protein-coupled receptor MAS effectively bound Ig21 by displacing Ig20 from autoinhibited WT filamin, but surprisingly, the capacity of these ligands to bind the P2204L mutant was much reduced despite the mutation-induced destabilization of the Ig20 structure that supposedly weakens the autoinhibition. Thermodynamic analysis indicated that compared with WT filamin, the conformationally fluctuating state of the Ig20 mutant makes Ig21 enthalpically favorable to bind ligand but with substantial entropic penalty, resulting in total higher free energy and reduced ligand affinity. Overall, our results reveal an unusual structural and thermodynamic basis for the P2204L-induced dysfunction of filamin and frontometaphyseal dysplasia disease.


Assuntos
Filaminas/química , Testa/anormalidades , Mutação de Sentido Incorreto , Osteocondrodisplasias , Termodinâmica , Substituição de Aminoácidos , Filaminas/genética , Filaminas/metabolismo , Humanos , Domínios Proteicos
2.
Biochemistry ; 54(44): 6673-83, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26460884

RESUMO

Although interaction of a few G protein-coupled receptors (GPCRs) with Filamin A, a key actin cross-linking and biomechanical signal transducer protein, has been observed, a comprehensive structure-function analysis of this interaction is lacking. Through a systematic sequence-based analysis, we found that a conserved filamin binding motif is present in the cytoplasmic domains of >20% of the 824 GPCRs encoded in the human genome. Direct high-affinity interaction of filamin binding motif peptides of select GPCRs with the Ig domain of Filamin A was confirmed by nuclear magnetic resonance spectroscopy and isothermal titration calorimetric experiments. Engagement of the filamin binding motif with the Filamin A Ig domain induced the phosphorylation of filamin by protein kinase A in vitro. In transfected cells, agonist activation as well as constitutive activation of representative GPCRs dramatically elicited recruitment and phosphorylation of cellular Filamin A, a phenomenon long known to be crucial for regulating the structure and dynamics of the cytoskeleton. Our data suggest a molecular mechanism for direct GPCR-cytoskeleton coupling via filamin. Until now, GPCR signaling to the cytoskeleton was predominantly thought to be indirect, through canonical G protein-mediated signaling cascades involving GTPases, adenylyl cyclases, phospholipases, ion channels, and protein kinases. We propose that the GPCR-induced filamin phosphorylation pathway is a conserved, novel biochemical signaling paradigm.


Assuntos
Filaminas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Filaminas/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Transdução de Sinais
3.
J Struct Biol ; 179(3): 289-98, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22414427

RESUMO

Particularly in higher eukaryotes, some protein domains are found in tandem repeats, performing broad functions often related to cellular organization. For instance, the eukaryotic protein filamin interacts with many proteins and is crucial for the cytoskeleton. The functional properties of long repeat domains are governed by the specific properties of each individual domain as well as by the repeat copy number. To provide better understanding of the evolutionary and functional history of repeating domains, we investigated the mode of evolution of the filamin domain in some detail. Among the domains that are common in long repeat proteins, sushi and spectrin domains evolve primarily through cassette tandem duplications while scavenger and immunoglobulin repeats appear to evolve through clustered tandem duplications. Additionally, immunoglobulin and filamin repeats exhibit a unique pattern where every other domain shows high sequence similarity. This pattern may be the result of tandem duplications, serve to avert aggregation between adjacent domains or it is the result of functional constraints. In filamin, our studies confirm the presence of interspersed integrin binding domains in vertebrates, while invertebrates exhibit more varied patterns, including more clustered integrin binding domains. The most notable case is leech filamin, which contains a 20 repeat expansion and exhibits unique dimerization topology. Clearly, invertebrate filamins are varied and contain examples of similar adjacent integrin-binding domains. Given that invertebrate integrin shows more similarity to the weaker filamin binder, integrin ß3, it is possible that the distance between integrin-binding domains is not as crucial for invertebrate filamins as for vertebrates.


Assuntos
Proteínas Contráteis/química , Proteínas Contráteis/genética , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/genética , Sequência de Aminoácidos , Animais , Análise por Conglomerados , Sequência Consenso , Evolução Molecular , Filaminas , Humanos , Cadeias de Markov , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Sequências Repetitivas de Aminoácidos , Análise de Sequência de Proteína
4.
J Biol Chem ; 285(22): 17166-76, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20351101

RESUMO

Mutations in the chloride channel cystic fibrosis transmembrane regulator (CFTR) cause cystic fibrosis, a genetic disorder characterized by defects in CFTR biosynthesis, localization to the cell surface, or activation by regulatory factors. It was discovered recently that surface localization of CFTR is stabilized by an interaction between the CFTR N terminus and the multidomain cytoskeletal protein filamin. The details of the CFTR-filamin interaction, however, are unclear. Using x-ray crystallography, we show how the CFTR N terminus binds to immunoglobulin-like repeat 21 of filamin A (FlnA-Ig21). CFTR binds to beta-strands C and D of FlnA-Ig21 using backbone-backbone hydrogen bonds, a linchpin serine residue, and hydrophobic side-chain packing. We use NMR to determine that the CFTR N terminus also binds to several other immunoglobulin-like repeats from filamin A in vitro. Our structural data explain why the cystic fibrosis-causing S13F mutation disrupts CFTR-filamin interaction. We show that FlnA-Ig repeats transfected into cultured Calu-3 cells disrupt CFTR-filamin interaction and reduce surface levels of CFTR. Our findings suggest that filamin A stabilizes surface CFTR by anchoring it to the actin cytoskeleton through interactions with multiple filamin Ig repeats. Such an interaction mode may allow filamins to cluster multiple CFTR molecules and to promote colocalization of CFTR and other filamin-binding proteins in the apical plasma membrane of epithelial cells.


Assuntos
Proteínas Contráteis/química , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Imunoglobulinas/química , Proteínas dos Microfilamentos/química , Actinas/química , Sequência de Aminoácidos , Biotinilação , Membrana Celular/metabolismo , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Filaminas , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos
5.
Protein Sci ; 23(6): 833-42, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24687350

RESUMO

Mortalin, a member of the Hsp70-family of molecular chaperones, functions in a variety of processes including mitochondrial protein import and quality control, Fe-S cluster protein biogenesis, mitochondrial homeostasis, and regulation of p53. Mortalin is implicated in regulation of apoptosis, cell stress response, neurodegeneration, and cancer and is a target of the antitumor compound MKT-077. Like other Hsp70-family members, Mortalin consists of a nucleotide-binding domain (NBD) and a substrate-binding domain. We determined the crystal structure of the NBD of human Mortalin at 2.8 Å resolution. Although the Mortalin nucleotide-binding pocket is highly conserved relative to other Hsp70 family members, we find that its nucleotide affinity is weaker than that of Hsc70. A Parkinson's disease-associated mutation is located on the Mortalin-NBD surface and may contribute to Mortalin aggregation. We present structure-based models for how the Mortalin-NBD may interact with the nucleotide exchange factor GrpEL1, with p53, and with MKT-077. Our structure may contribute to the understanding of disease-associated Mortalin mutations and to improved Mortalin-targeting antitumor compounds.


Assuntos
Proteínas de Choque Térmico HSP70/biossíntese , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Humanos , Nucleotídeos/metabolismo , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA