Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Bioorg Med Chem ; 105: 117732, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38643719

RESUMO

Virus entry inhibitors are emerging as an attractive class of therapeutics for the suppression of viral transmission. Naturally occurring pradimicin A (PRM-A) has received particular attention as the first-in-class entry inhibitor that targets N-glycans present on viral surface. Despite the uniqueness of its glycan-targeted antiviral activity, there is still limited knowledge regarding how PRM-A binds to viral N-glycans. Therefore, in this study, we performed binding analysis of PRM-A with synthetic oligosaccharides that reflect the structural motifs characteristic of viral N-glycans. Binding assays and molecular modeling collectively suggest that PRM-A preferentially binds to branched oligomannose motifs of N-glycans via simultaneous recognition of two mannose residues at the non-reducing ends. We also demonstrated, for the first time, that PRM-A can effectively inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. Significantly, the anti-SARS-CoV-2 effect of PRM-A is attenuated in the presence of the synthetic branched oligomannose, suggesting that the inhibition of SARS-CoV-2 infection is due to the interaction of PRM-A with the branched oligomannose-containing N-glycans. These data provide essential information needed to understand the antiviral mechanism of PRM-A and suggest that PRM-A could serve as a candidate SARS-CoV-2 entry inhibitor targeting N-glycans.


Assuntos
Antivirais , Polissacarídeos , Pradimicinas e Benanomicinas , SARS-CoV-2 , Internalização do Vírus , SARS-CoV-2/efeitos dos fármacos , Polissacarídeos/química , Polissacarídeos/farmacologia , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Humanos , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Chlorocebus aethiops , Animais , Células Vero
2.
Appl Microbiol Biotechnol ; 108(1): 199, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324037

RESUMO

L-Arabinofuranosides with ß-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a ß-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 ß-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-ß1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-ß1,3-Araf structures but not those containing Araf-ß1,2-Araf and Araf-ß1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two ß-sandwich domains. A hairpin structure with two ß-strands was observed in Bll3HypBA1, to extend from a ß-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a ß1,3-specific ß-L-arabinofuranosidase. KEY POINTS: • ß1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • ß-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a ß1,3-linkage-specific ß-l-arabinofuranosidase.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Catálise , Cisteína
3.
Molecules ; 29(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675593

RESUMO

Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-ß-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, ß-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.


Assuntos
Dissacarídeos , Frutose , Glucose , Sacarose , Dissacarídeos/química , Dissacarídeos/síntese química , Sacarose/química , Glicosilação , Edulcorantes/química
4.
Chembiochem ; 24(5): e202200637, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579407

RESUMO

In plant cell walls, the hydroxyproline-rich glycoproteins (HRGPs) such as extensin contain oligoarabinofuranoside linked to a hydroxyproline (Hyp) residue. The mature arabinooligosaccharide was revealed to be a tetrasaccharide (α-l-Araf-(1→3)-ß-l-Araf-(1→2)-ß-l-Araf-(1→2)-ß-l-Araf, l-Araf4 ), whose linkages are targets of the bifidobacterial and Xanthomonas arabinooligosaccharide-degrading enzymes. The l-Araf4 motif was cleaved by GH43 α-l-arabinofuranosidase (Arafase) and converted to an l-Araf3 -linked structure. The latter is then cleaved by GH121 ß-l-arabinobiosidase (HypBA2), producing ß-l-Araf-(1→2)-l-Ara (ß-l-arabinobiose) and mono-ß-l-Araf linked to the HRGP backbone. In bifidobacteria, the ß-l-arabinobiose is then hydrolyzed by GH127 ß-l-Arafase (Bll1HypBA1), a mechanistically unique cysteine glycosidase. We recently identified the distantly related homologue from Xanthomonas euvesicatoria as GH146 ß-l-Arafase along with paralogues from Bifidobacterium longum, one of which, Bll4HypBA1 (BLLJ_0089), can degrade l-Araf1 -Hyp in a similar way to that of GH146. As the chemical synthesis of the extensin hydrophilic motif 1 a, which possesses three distinct linkages that connect four oligoAraf residues [Hyp(l-Arafn ) (n=4, 3, 1)], was achieved previously, we precisely monitored the step-wise enzymatic cleavage of 1 a in addition to that of potato lectin. The results unequivocally revealed that this enzyme specifically degrades the Hyp(l-Araf1 ) motif.


Assuntos
Bifidobacterium , Glicosídeo Hidrolases , Bifidobacterium/metabolismo , Hidroxiprolina , Glicosídeo Hidrolases/metabolismo , Glicoproteínas
5.
Chembiochem ; 24(5): e202200444, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36219527

RESUMO

In the endoplasmic reticulum glycoprotein quality control system, UDP-glucose : glycoprotein glucosyltransferase (UGGT) functions as a folding sensor. Although it is known to form a heterodimer with selenoprotein F (SelenoF), the details of the complex formation remain obscure. A pulldown assay using co-transfected SelenoF and truncated mutants of human UGGT1 (HUGT1) revealed that SelenoF binds to the TRXL2 domain of HUGT1. Additionally, a newly developed photoaffinity crosslinker was selectively introduced into cysteine residues of recombinant SelenoF to determine the spatial orientation of SelenoF to HUGT1. The crosslinking experiments showed that SelenoF formed a covalent bond with amino acids in the TRXL3 region and the interdomain between ßS2 and GT24 of HUGT1 via the synthetic crosslinker. SelenoF might play a role in assessing and refining the disulfide bonds of misfolded glycoproteins in the hydrophobic cavity of HUGT1 as it binds to the highly flexible region of HUGT1 to reach its long hydrophobic cavity. Clarification of the SelenoF-binding domain of UGGT and its relative position will help predict and reveal the function of SelenoF from a structural perspective.


Assuntos
Glucosiltransferases , Glicoproteínas , Humanos , Glucosiltransferases/metabolismo , Glicoproteínas/metabolismo , Difosfato de Uridina , Selenoproteínas , Glucose/metabolismo , Dobramento de Proteína
6.
Molecules ; 28(15)2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37570614

RESUMO

Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and ß-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and ß-mannoside, via the 1,2-cis glycosylation pathway and ß-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.


Assuntos
Glucanos , Polissacarídeos , Glicosilação , Glucanos/química , Glucosídeos , Manosídeos , Estereoisomerismo
7.
J Biol Chem ; 297(5): 101324, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34688653

RESUMO

Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on ß-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of ß-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2':2,1'-ß-D-Frup (diheterolevulosan II) and ß-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2':2,1'-ß-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with ß-D-Fruf and ß-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).


Assuntos
Proteínas de Bactérias/química , Bifidobacterium/enzimologia , Glicosídeo Hidrolases/química , Modelos Moleculares , Oligossacarídeos/química , Cristalografia por Raios X , Glicosídeo Hidrolases/classificação
8.
Glycobiology ; 32(2): 171-180, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34735571

RESUMO

ß-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-ß-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, ß-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the ß-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.


Assuntos
Cisteína , Zinco , Catálise , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Glicosídeo Hidrolases/química , Especificidade por Substrato
9.
Biochem Biophys Res Commun ; 612: 44-49, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35500441

RESUMO

Oligomannose-type glycans on glycoproteins play an important role in the endoplasmic reticulum (ER)-protein quality control. Mannose trimming of the glycans triggers the ER-associated protein degradation pathway. In mammals, ER mannosyl-oligosaccharide 1,2-α-mannosidase 1 and three ER degradation -enhancing α-mannosidase-like proteins (EDEMs) are responsible for mannose trimming. However, the exact role of EDEMs as α-mannosidases in ERAD remains unclear. Here, we performed the biochemical characterization of EDEM3 using synthetic oligomannose-type glycan substrates. In vitro assays revealed that EDEM3 can convert an asparagine-linked M9 glycan to M8 and M7 glycans in contrast to glycine-linked M9 glycan, and the activity is enhanced in the presence of ERp46, a known partner protein of EDEM3. Our study provides novel insights into the enzymatic properties of EDEM3 and the use of artificial glycan substrates as tools to study ERAD mechanisms.


Assuntos
Asparagina , Manose , Animais , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Manose/metabolismo , Manosidases/metabolismo , Polissacarídeos/metabolismo , alfa-Manosidase/metabolismo
10.
Appl Environ Microbiol ; 88(6): e0218721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108084

RESUMO

Gum arabic is an arabinogalactan protein (AGP) that is effective as a prebiotic for the growth of bifidobacteria in the human intestine. We recently identified a key enzyme in the glycoside hydrolase (GH) family 39, 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase), for the assimilation of gum arabic AGP in Bifidobacterium longum subsp. longum. The enzyme released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and facilitated the action of other enzymes for degrading the AGP backbone and modified sugar. In this study, we identified an α-l-arabinofuranosidase (BlArafE; encoded by BLLJ_1850), a multidomain enzyme with both GH43_22 and GH43_34 catalytic domains, as a critical enzyme for the degradation of modified α-l-arabinofuranosides in gum arabic AGP. Site-directed mutagenesis approaches revealed that the α1,3/α1,4-Araf double-substituted gum arabic AGP side chain was initially degraded by the GH43_22 domain and subsequently cleaved by the GH43_34 domain to release α1,3-Araf and α1,4-Araf residues, respectively. Furthermore, we revealed that a tetrasaccharide, α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal, was a limited degradative oligosaccharide in the gum arabic AGP fermentation of B. longum subsp. longum JCM7052. The oligosaccharide was produced from gum arabic AGP by the cooperative action of the three cell surface-anchoring enzymes, GAfase, exo-ß1,3-galactanase (Bl1,3Gal), and BlArafE, on B. longum subsp. longum JCM7052. Furthermore, the tetrasaccharide was utilized by the commensal bacteria. IMPORTANCE Terminal galactose residues of the side chain of gum arabic arabinogalactan protein (AGP) are mainly substituted by α1,3/α1,4-linked Araf and ß1,6-linked α-l-Rhap-(1→4)-ß-d-GlcpA residues. This study found a multidomain BlArafE with GH43_22 and GH43_34 catalytic domains showing cooperative action for degrading α1,3/α1,4-linked Araf of the side chain of gum arabic AGP. In particular, the GH43_34 domain of BlArafE was a novel α-l-arabinofuranosidase for cleaving the α1,4-Araf linkage of terminal galactose. α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal tetrasaccharide was released from gum arabic AGP by the cooperative action of GAfase, GH43_24 exo-ß-1,3-galactanase (Bl1,3Gal), and BlArafE and remained after B. longum subsp. longum JCM7052 culture. Furthermore, in vitro assimilation test of the remaining oligosaccharide using Bacteroides species revealed that cross-feeding may occur from bifidobacteria to other taxonomic groups in the gut.


Assuntos
Bifidobacterium longum , Bifidobacterium longum/metabolismo , Galactanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Goma Arábica , Humanos , Oligossacarídeos/química
11.
Glycoconj J ; 39(5): 701-710, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34791612

RESUMO

C-Mannosylation is a rare type of protein glycosylation and is reportedly critical for the proper folding and secretion of parental proteins. Still, the effects of C-mannosylation on the biological functions of these modified proteins remain to be elucidated. The Trp-x-x-Trp (WxxW) sequences, whose first tryptophan (Trp) can be C-mannosylated, constitute the consensus motifs for this glycosylation modification and are commonly found in thrombospondin type 1 repeats that regulate molecular functions of thrombospondin 1 in binding and activation of transforming growth factor ß (TGF-ß). TGF-ß plays critical roles in the control of the central nervous system including synaptogenesis. Here, we investigated whether C-mannosylation of the synthetic Trp-Ser-Pro-Trp (WSPW) peptide may confer certain functions to this peptide in TGF-ß-mediated synaptogenesis. By using primary cultured rat astrocytes and cortical neurons, we found that the C-mannosylated WSPW (C-Man-WSPW) peptide, but not non-mannosylated WSPW peptide, suppressed astrocyte-conditioned medium (ACM)-stimulated synaptogenesis. C-Man-WSPW peptide inhibited both ACM- and recombinant mature TGF-ß1-induced activations of Smad 2, an important mediator in TGF-ß signaling. Interactions of recombinant mature TGF-ß with the C-Man-WSPW peptide were similar to those with non-C-mannosylated WSPW peptide. Taken together, our results reveal a novel function of C-mannosylation of the WxxW motif in signaling and synaptogenesis mediated by TGF-ß. Molecular details of how C-mannosylation affects the biological functions of WxxW motifs deserve future study for clarification.


Assuntos
Trombospondina 1 , Trombospondinas , Animais , Astrócitos/metabolismo , Glicosilação , Manose/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Ratos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Trombospondinas/química , Trombospondinas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia
12.
Bioorg Med Chem ; 68: 116849, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35653870

RESUMO

Methyl ß-l-arabinofuranosyl-(1 â†’ 2)-, -(1 â†’ 3)-, and -(1 â†’ 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose ß-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing ß-l-arabinofuranosyl-(1 â†’ 5)-l-arabinofuranosyl non-reducing terminal structure with the branched ß-l-arabinofuranosyl-(1 â†’ 5)-[α-l-arabinofuranosyl-(1 â†’ 3)]-α-l-arabinofuranosyl and the liner ß-l-arabinofuranosyl-(1 â†’ 5)-ß-l-arabinofuranosyl-(1 â†’ 5)-ß-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial ß-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to ß-(1 â†’ 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, ß-(1 â†’ 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to ß-(1 â†’ 2)-linkage than bifidobacterial HypBA1.


Assuntos
Dissacarídeos , Glicosídeo Hidrolases , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
13.
Bioorg Med Chem ; 75: 117054, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36334492

RESUMO

To understand the precise mechanism of the glycoside hydrolase (GH) family 127, a cysteine ß-l-arabinofuranosidase (Arafase) - HypBA1 - has been isolated from Bifidobacterium longum in the human Gut microbiota, and the design and synthesis of the mechanism-based inhibitors such as l-Araf-haloacetamides have been carried out. The α-l-Araf-azide derivative was used as the monoglycosylamine equivalent to afford the l-Araf-chloroacetamides (α/ß-1-Cl) as well as bromoacetamides (α/ß-1-Br) in highly stereoselective manner through Staudinger reaction followed by amide formation with/without anomerization. Against HypBA1, the probes 1, especially in the case of α/ß-1-Br inhibited the hydrolysis. Conformational implications of these observations are discussed in this manuscript. Additional examinations using l-Araf-azides (α/ß-5) resulted in further mechanistic observations of the GH127/146 cysteine glycosidases, including the hydrolysis of ß-5 as the substrate and oxidative inhibition by α-5 using the GH127 homologue.

14.
Artigo em Inglês | MEDLINE | ID: mdl-35013028

RESUMO

Pradimicins (PRMs) are an exceptional family of natural products that specifically bind d-mannose (Man). In the past decade, their scientific significance has increased greatly, with the emergence of biological roles of Man-containing glycans. However, research into the use of PRMs has been severely limited by their inherent tendency to form water-insoluble aggregates. Recently, we have established a derivatization strategy to suppress PRM aggregation, providing an opportunity for practical application of PRMs in glycobiological research. This article first outlines the challenges in studying Man-binding mechanisms and structural modifications of PRMs, and then describes our approach to address them. We also present our recent attempts toward the development of PRM-based research tools.


Assuntos
Manose/metabolismo , Antraciclinas , Produtos Biológicos , Humanos
15.
Biochem Biophys Res Commun ; 536: 52-58, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33360823

RESUMO

The lectin chaperones calnexin (CNX) and calreticulin (CRT) localized in the endoplasmic reticulum play important roles in glycoprotein quality control. Although the interaction between these lectin chaperones and ERp57 is well known, it has been recently reported that endoplasmic reticulum protein 29 (ERp29), a member of PDI family, interacts with CNX and CRT. The biochemical function of ERp29 is unclear because it exhibits no ERp57-like redox activity. In this study, we addressed the possibility that ER chaperones CNX and CRT are connected via ERp29, based on our observation that ERp29 exists as a dimer. As a result, we showed that CNX dimerizes through ERp29. These results endorse the hypothesis that ERp29 serves as a bridge that links two molecules of CNX. Also, we showed that similar complexes such as CNX-CRT were formed via ERp29.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Multimerização Proteica , Calnexina/metabolismo , Células HeLa , Humanos , Proteínas Mutantes/metabolismo
16.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674431

RESUMO

Gum arabic arabinogalactan (AG) protein (AGP) is a unique dietary fiber that is degraded and assimilated by only specific strains of Bifidobacterium longum subsp. longum Here, we identified a novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052 and classified it into glycoside hydrolase family 39 (GH39). GAfase released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and ß-l-Arap-(1→3)-l-Ara from larch AGP, and the α-d-Galp-(1→3)-l-Ara release activity was found to be 594-fold higher than that of ß-l-Arap-(1→3)-l-Ara. The GAfase gene was part of a gene cluster that included genes encoding a GH36 α-galactosidase candidate and ABC transporters for the assimilation of the released α-d-Galp-(1→3)-l-Ara in B. longum Notably, when α-d-Galp-(1→3)-l-Ara was removed from gum arabic AGP, it was assimilated by both B. longum JCM7052 and the nonassimilative B. longum JCM1217, suggesting that the removal of α-d-Galp-(1→3)-l-Ara from gum arabic AGP by GAfase permitted the cooperative action with type II AG degradative enzymes in B. longum The present study provides new insight into the mechanism of gum arabic AGP degradation in B. longumIMPORTANCE Bifidobacteria harbor numerous carbohydrate-active enzymes that degrade several dietary fibers in the gastrointestinal tract. B. longum JCM7052 is known to exhibit the ability to assimilate gum arabic AGP, but the key enzyme involved in the degradation of gum arabic AGP remains unidentified. Here, we cloned and characterized a GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052. The enzyme was responsible for the release of α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP. The presence of a gene cluster including the GAfase gene is specifically observed in gum arabic AGP assimilative strains. However, GAfase carrier strains may affect GAfase noncarrier strains that express other type II AG degradative enzymes. These findings provide insights into the bifidogenic effect of gum arabic AGP.


Assuntos
Proteínas de Bactérias/genética , Bifidobacterium/enzimologia , Glicosídeo Hidrolases/genética , Proteínas de Bactérias/metabolismo , Bifidobacterium/genética , Galactanos/metabolismo , Glicosídeo Hidrolases/metabolismo , Goma Arábica
17.
J Org Chem ; 86(23): 16901-16915, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34797079

RESUMO

A direct, efficient, and versatile glycosylation methodology promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of ß-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-ß linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful ß-mannosylation of a wide variety of alcohol acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodology enables the modular synthesis of the key intermediate trisaccharide with Man-ß-(1 → 4)-GlcNAc-ß-(1 → 4)-GlcNAc linkage for N-glycan synthesis. Theoretical investigations with density functional theory calculations delved into the mechanistic details of this ß-selective mannosylation and elucidated two zinc cations' essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermolecular interaction.


Assuntos
Iodetos , Zinco , Glicosilação , Humanos , Manosídeos , Oligossacarídeos
18.
Bioorg Med Chem ; 55: 116590, 2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-34973516

RESUMO

Pradimicin A (PRM-A) and its derivatives comprise a unique family of antibiotics that show antifungal, antiviral, and antiparasitic activities through binding to d-mannose (Man)-containing glycans of pathogenic species. Despite their great potential as drug leads with an exceptional antipathogenic action, therapeutic application of PRMs has been severely limited by their tendency to form water-insoluble aggregates. Recently, we found that attachment of 2-aminoethanol to the carboxy group of PRM-A via amide linkage significantly suppressed the aggregation. Here, we prepared additional amide derivatives (2-8) of PRM-A to examine the possibility that the amide formation of PRM-A could suppress its aggregation propensity. Sedimentation assay and isothermal titration calorimetry experiment confirmed that all amide derivatives can bind Man without significant aggregation. Among them, hydroxamic acid derivative (4) showed the most potent Man-binding activity, which was suggested to be derived from the anion formation of the hydroxamic acid moiety by molecular modeling. Derivative 4 also exhibited significant antifungal activity comparable to that of PRM-A. These results collectively indicate that amide formation of PRM-A is the promising strategy to develop less aggregative derivatives, and 4 could serve as a lead compound for exploring the therapeutic application of PRM-A.

19.
J Nat Prod ; 84(9): 2496-2501, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34524799

RESUMO

Pradimicin A (PRM-A) and related compounds constitute an exceptional family of natural pigments that show Ca2+-dependent recognition of d-mannose (Man). Although these compounds hold great promise as research tools in glycobiology, their practical application has been severely limited by their inherent tendency to form water-insoluble aggregates. Here, we demonstrate that the 2-hydroxyethylamide derivative (PRM-EA) of PRM-A shows little aggregation in neutral aqueous media and retains binding specificity for Man. We also show that PRM-EA stains glycoproteins in dot blot assays, whereas PRM-A fails to do so, owing to severe aggregation. Significantly, PRM-EA is sensitive to glycoproteins carrying high mannose-type and hybrid-type N-linked glycans, but not to those carrying complex-type N-linked glycans. Such staining selectivity has never been observed in conventional dyes, suggesting that PRM-EA could serve as a unique staining agent for the selective detection of glycoproteins with terminal Man residues.


Assuntos
Antraciclinas/química , Corantes/química , Glicoproteínas/análise , Manose/química , Estrutura Molecular , Coloração e Rotulagem
20.
Molecules ; 26(17)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34500691

RESUMO

C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.


Assuntos
Manose/metabolismo , Proteína C/metabolismo , Triptofano/metabolismo , Humanos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA