Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(42): e2306990120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37831741

RESUMO

Hemispheric lateralization and its origins have been of great interest in neuroscience for over a century. The left-right asymmetry in cortical thickness may stem from differential maturation of the cerebral cortex in the two hemispheres. Here, we investigated the spatial pattern of hemispheric differences in cortical thinning during adolescence, and its relationship with the density of neurotransmitter receptors and homotopic functional connectivity. Using longitudinal data from IMAGEN study (N = 532), we found that many cortical regions in the frontal and temporal lobes thinned more in the right hemisphere than in the left. Conversely, several regions in the occipital and parietal lobes thinned less in the right (vs. left) hemisphere. We then revealed that regions thinning more in the right (vs. left) hemispheres had higher density of neurotransmitter receptors and transporters in the right (vs. left) side. Moreover, the hemispheric differences in cortical thinning were predicted by homotopic functional connectivity. Specifically, regions with stronger homotopic functional connectivity showed a more symmetrical rate of cortical thinning between the left and right hemispheres, compared with regions with weaker homotopic functional connectivity. Based on these findings, we suggest that the typical patterns of hemispheric differences in cortical thinning may reflect the intrinsic organization of the neurotransmitter systems and related patterns of homotopic functional connectivity.


Assuntos
Mapeamento Encefálico , Afinamento Cortical Cerebral , Adolescente , Humanos , Vias Neurais/fisiologia , Imageamento por Ressonância Magnética , Lateralidade Funcional/fisiologia , Receptores de Neurotransmissores , Encéfalo/fisiologia
2.
Magn Reson Med ; 91(4): 1659-1675, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38031517

RESUMO

PURPOSE: To investigate safety and performance aspects of parallel-transmit (pTx) RF control-modes for a body coil at B 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . METHODS: Electromagnetic simulations of 11 human voxel models in cardiac imaging position were conducted for B 0 = 0.5 T $$ {B}_0=0.5\mathrm{T} $$ , 1.5 T $$ 1.5\mathrm{T} $$ and 3 T $$ 3\mathrm{T} $$ and a body coil with a configurable number of transmit channels (1, 2, 4, 8, 16). Three safety modes were considered: the 'SAR-controlled mode' (SCM), where specific absorption rate (SAR) is limited directly, a 'phase agnostic SAR-controlled mode' (PASCM), where phase information is neglected, and a 'power-controlled mode' (PCM), where the voltage amplitude for each channel is limited. For either mode, safety limits were established based on a set of 'anchor' simulations and then evaluated in 'target' simulations on previously unseen models. The comparison allowed to derive safety factors accounting for varying patient anatomies. All control modes were compared in terms of the B 1 + $$ {B}_1^{+} $$ amplitude and homogeneity they permit under their respective safety requirements. RESULTS: Large safety factors (approximately five) are needed if only one or two anchor models are investigated but they shrink with increasing number of anchors. The achievable B 1 + $$ {B}_1^{+} $$ is highest for SCM but this advantage is reduced when the safety factor is included. PCM appears to be more robust against variations of subjects. PASCM performance is mostly in between SCM and PCM. Compared to standard circularly polarized (CP) excitation, pTx offers minor B 1 + $$ {B}_1^{+} $$ improvements if local SAR limits are always enforced. CONCLUSION: PTx body coils can safely be used at B 0 ≤ 3 T $$ {B}_0\le 3\mathrm{T} $$ . Uncertainties in patient anatomy must be accounted for, however, by simulating many models.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Simulação por Computador , Coração/diagnóstico por imagem , Imagens de Fantasmas , Ondas de Rádio
3.
Mol Psychiatry ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37369720

RESUMO

Leveraging ~10 years of prospective longitudinal data on 704 participants, we examined the effects of adolescent versus young adult cannabis initiation on MRI-assessed cortical thickness development and behavior. Data were obtained from the IMAGEN study conducted across eight European sites. We identified IMAGEN participants who reported being cannabis-naïve at baseline and had data available at baseline, 5-year, and 9-year follow-up visits. Cannabis use was assessed with the European School Survey Project on Alcohol and Drugs. T1-weighted MR images were processed through the CIVET pipeline. Cannabis initiation occurring during adolescence (14-19 years) and young adulthood (19-22 years) was associated with differing patterns of longitudinal cortical thickness change. Associations between adolescent cannabis initiation and cortical thickness change were observed primarily in dorso- and ventrolateral portions of the prefrontal cortex. In contrast, cannabis initiation occurring between 19 and 22 years of age was associated with thickness change in temporal and cortical midline areas. Follow-up analysis revealed that longitudinal brain change related to adolescent initiation persisted into young adulthood and partially mediated the association between adolescent cannabis use and past-month cocaine, ecstasy, and cannabis use at age 22. Extent of cannabis initiation during young adulthood (from 19 to 22 years) had an indirect effect on psychotic symptoms at age 22 through thickness change in temporal areas. Results suggest that developmental timing of cannabis exposure may have a marked effect on neuroanatomical correlates of cannabis use as well as associated behavioral sequelae. Critically, this work provides a foundation for neurodevelopmentally informed models of cannabis exposure in humans.

4.
Magn Reson Med ; 90(6): 2608-2626, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37533167

RESUMO

PURPOSE: To investigate a novel reduced RF heating method for imaging in the presence of active implanted medical devices (AIMDs) which employs a sensor-equipped implant that provides wireless feedback. METHODS: The implant, consisting of a generator case and a lead, measures RF-induced E $$ E $$ -fields at the implant tip using a simple sensor in the generator case and transmits these values wirelessly to the MR scanner. Based on the sensor signal alone, parallel transmission (pTx) excitation vectors were calculated to suppress tip heating and maintain image quality. A sensor-based imaging metric was introduced to assess the image quality. The methodology was studied at 7T in testbed experiments, and at a 3T scanner in an ASTM phantom containing AIMDs instrumented with six realistic deep brain stimulation (DBS) lead configurations adapted from patients. RESULTS: The implant successfully measured RF-induced E $$ E $$ -fields (Pearson correlation coefficient squared [R2 ] = 0.93) and temperature rises (R2 = 0.95) at the implant tip. The implant acquired the relevant data needed to calculate the pTx excitation vectors and transmitted them wirelessly to the MR scanner within a single shot RF sequence (<60 ms). Temperature rises for six realistic DBS lead configurations were reduced to 0.03-0.14 K for heating suppression modes compared to 0.52-3.33 K for the worst-case heating, while imaging quality remained comparable (five of six lead imaging scores were ≥0.80/1.00) to conventional circular polarization (CP) images. CONCLUSION: Implants with sensors that can communicate with an MR scanner can substantially improve safety for patients in a fast and automated manner, easing the current burden for MR personnel.


Assuntos
Estimulação Encefálica Profunda , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Próteses e Implantes , Imagens de Fantasmas , Temperatura Alta , Ondas de Rádio
5.
NMR Biomed ; 36(7): e4900, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36624556

RESUMO

To protect implant carriers in MRI from excessive radiofrequency (RF) heating it has previously been suggested to assess that hazard via sensors on the implant. Other work recommended parallel transmission (pTx) to actively mitigate implant-related heating. Here, both ideas are integrated into one comprehensive safety concept where native pTx safety (without implant) is ensured by state-of-the-art field simulations and the implant-specific hazard is quantified in situ using physical sensors. The concept is demonstrated by electromagnetic simulations performed on a human voxel model with a simplified spinal-cord implant in an eight-channel pTx body coil at 3 T . To integrate implant and native safety, the sensor signal must be calibrated in terms of an established safety metric (e.g., specific absorption rate [SAR]). Virtual experiments show that E -field and implant-current sensors are well suited for this purpose, while temperature sensors require some caution, and B 1 probes are inadequate. Based on an implant sensor matrix Q s , constructed in situ from sensor readings, and precomputed native SAR limits, a vector space of safe RF excitations is determined where both global (native) and local (implant-related) safety requirements are satisfied. Within this safe-excitation subspace, the solution with the best image quality in terms of B 1 + magnitude and homogeneity is then found by a straightforward optimization algorithm. In the investigated example, the optimized pTx shim provides a 3-fold higher mean B 1 + magnitude compared with circularly polarized excitation for a maximum implant-related temperature increase ∆ T imp ≤ 1 K . To date, sensor-equipped implants interfaced to a pTx scanner exist as demonstrator items in research labs, but commercial devices are not yet within sight. This paper aims to demonstrate the significant benefits of such an approach and how this could impact implant-related RF safety in MRI. Today, the responsibility for safe implant scanning lies with the implant manufacturer and the MRI operator; within the sensor concept, the MRI manufacturer would assume much of the operator's current responsibility.


Assuntos
Temperatura Alta , Ondas de Rádio , Humanos , Simulação por Computador , Imagens de Fantasmas , Imageamento por Ressonância Magnética/métodos
6.
Psychol Med ; 53(5): 1759-1769, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37310336

RESUMO

BACKGROUND: It has not yet been determined if the commonly reported cannabis-psychosis association is limited to individuals with pre-existing genetic risk for psychotic disorders. METHODS: We examined whether the relationship between polygenic risk score for schizophrenia (PRS-Sz) and psychotic-like experiences (PLEs), as measured by the Community Assessment of Psychic Experiences-42 (CAPE-42) questionnaire, is mediated or moderated by lifetime cannabis use at 16 years of age in 1740 of the individuals of the European IMAGEN cohort. Secondary analysis examined the relationships between lifetime cannabis use, PRS-Sz and the various sub-scales of the CAPE-42. Sensitivity analyses including covariates, including a PRS for cannabis use, were conducted and results were replicated using data from 1223 individuals in the Dutch Utrecht cannabis cohort. RESULTS: PRS-Sz significantly predicted cannabis use (p = 0.027) and PLE (p = 0.004) in the IMAGEN cohort. In the full model, considering PRS-Sz and covariates, cannabis use was also significantly associated with PLE in IMAGEN (p = 0.007). Results remained consistent in the Utrecht cohort and through sensitivity analyses. Nevertheless, there was no evidence of a mediation or moderation effects. CONCLUSIONS: These results suggest that cannabis use remains a risk factor for PLEs, over and above genetic vulnerability for schizophrenia. This research does not support the notion that the cannabis-psychosis link is limited to individuals who are genetically predisposed to psychosis and suggests a need for research focusing on cannabis-related processes in psychosis that cannot be explained by genetic vulnerability.


Assuntos
Cannabis , Alucinógenos , Transtornos Psicóticos , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/epidemiologia , Esquizofrenia/genética , Cannabis/efeitos adversos , Transtornos Psicóticos/epidemiologia , Transtornos Psicóticos/genética , Agonistas de Receptores de Canabinoides
7.
J Cardiovasc Magn Reson ; 25(1): 19, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935515

RESUMO

INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR.


Assuntos
Imageamento por Ressonância Magnética , Polietileno , Humanos , Reprodutibilidade dos Testes , Sefarose , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Miocárdio/patologia , Imagens de Fantasmas , Espectroscopia de Ressonância Magnética , Inflamação/patologia
8.
MAGMA ; 36(2): 191-210, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37029886

RESUMO

Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.


Assuntos
Imageamento por Ressonância Magnética , Imagem Corporal Total , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Imagem Corporal Total/métodos , Alemanha , Campos Magnéticos
9.
Proc Natl Acad Sci U S A ; 117(22): 12411-12418, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32430323

RESUMO

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cognição , Escolaridade , Sucesso Acadêmico , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Feminino , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Memória de Curto Prazo , Herança Multifatorial , Classe Social , Adulto Jovem
10.
Eur Child Adolesc Psychiatry ; 32(9): 1633-1642, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35318541

RESUMO

It has been suggested that autistic traits are associated with less frequent alcohol use in adolescence. Our study seeks to examine the relationship between autistic traits and alcohol use in a large adolescent population. Leveraging data from the IMAGEN cohort, including 2045 14-year-old adolescents that were followed-up to age 18, we selected items on social preference/skills and rigidity from different questionnaires. We used linear regression models to (1) test the effect of the sum scores on the prevalence of alcohol use (AUDIT-C) over time, (2) explore the relationship between autistic traits and alcohol use patterns, and (3) explore the specific effect of each autistic trait on alcohol use. Higher scores on the selected items were associated with trajectories of less alcohol use from the ages between 14 and 18 (b = - 0.030; CI 95% = - 0.042, - 0.017; p < 0.001). Among adolescents who used alcohol, those who reported more autistic traits were also drinking less per occasion than their peers and were less likely to engage in binge drinking. We found significant associations between alcohol use and social preference (p < 0.001), nervousness for new situations (p = 0.001), and detail orientation (p < 0.001). Autistic traits (social impairment, detail orientation, and anxiety) may buffer against alcohol use in adolescence.


Assuntos
Transtorno Autístico , Humanos , Adolescente , Transtornos de Ansiedade , Inquéritos e Questionários
11.
Magn Reson Med ; 88(6): 2645-2661, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35906923

RESUMO

PURPOSE: To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS: Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS: Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION: Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.


Assuntos
Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Simulação por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio
12.
Magn Reson Med ; 87(1): 509-527, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34397114

RESUMO

PURPOSE: Rapid detection and mitigation of radiofrequency (RF)-induced implant heating during MRI based on small and low-cost embedded sensors. THEORY AND METHODS: A diode and a thermistor are embedded at the tip of an elongated mock implant. RF-induced voltages or temperature change measured by these root mean square (RMS) sensors are used to construct the sensor Q-Matrix (QS ). Hazard prediction, monitoring and parallel transmit (pTx)-based mitigation using these sensors is demonstrated in benchtop measurements at 300 MHz and within a 3T MRI. RESULTS: QS acquisition and mitigation can be performed in <20 ms demonstrating real-time capability. The acquisitions can be performed using safe low powers (<3 W) due to the high reading precision of the diode (126 µV) and thermistor (26 µK). The orthogonal projection method used for pTx mitigation was able to reduce the induced signals and temperatures in all 155 investigated locations. Using the QS approach in a pTx capable 3T MRI with either a two-channel body coil or an eight-channel head coil, RF-induced heating was successfully assessed, monitored and mitigated while the image quality outside the implant region was preserved. CONCLUSION: Small (<1.5 mm3 ) and low-cost (<1 €) RMS sensors embedded in an implant can provide all relevant information to predict, monitor and mitigate RF-induced heating in implants, while preserving image quality. The proposed pTx-based QS approach is independent of simulations or in vitro testing and therefore complements these existing safety assessments.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Próteses e Implantes , Ondas de Rádio
13.
Magn Reson Med ; 88(5): 1978-1993, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35906900

RESUMO

PURPOSE: To simultaneously acquire spectroscopic signals from two MRS voxels using a multi-banded 2 spin-echo, full-intensity acquired localized (2SPECIAL) sequence, and to decompose the signal to their respective regions by a novel voxel-GRAPPA (vGRAPPA) decomposition approach for in vivo brain applications at 7 T. METHODS: A wideband, uniform rate, smooth truncation (WURST) multi-banded pulse was incorporated into SPECIAL to implement 2SPECIAL for simultaneous multi-voxel spectroscopy (sMVS). To decompose the acquired data, the voxel-GRAPPA decomposition algorithm is introduced, and its performance is compared to the SENSE-based decomposition. Furthermore, the limitations of two-voxel excitation concerning the multi-banded adiabatic inversion pulse, as well as of the combined B0 shim and B1 + adjustments, are evaluated. RESULTS: It was successfully shown that the 2SPECIAL sequence enables sMVS without a significant loss in SNR while reducing the total scan time by 21.6% compared to two consecutive acquisitions. The proposed voxel-GRAPPA algorithm properly reassigns the signal components to their respective origin region and shows no significant differences to the well-established SENSE-based algorithm in terms of leakage (both <10%) or Cramér-Rao lower bounds (CRLB) for in vivo applications, while not requiring the acquisition of additional sensitivity maps and thus decreasing motion sensitivity. CONCLUSION: The use of 2SPECIAL in combination with the novel voxel-GRAPPA decomposition technique allows a substantial reduction of measurement time compared to the consecutive acquisition of two single voxels without a significant decrease in spectral quality or metabolite quantification accuracy and thus provides a new option for multiple-voxel applications.


Assuntos
Algoritmos , Encéfalo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Movimento (Física)
14.
Magn Reson Med ; 87(3): 1119-1135, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34783376

RESUMO

PURPOSE: To introduce a study design and statistical analysis framework to assess the repeatability, reproducibility, and minimal detectable changes (MDCs) of metabolite concentrations determined by in vivo MRS. METHODS: An unbalanced nested study design was chosen to acquire in vivo MRS data within different repeatability and reproducibility scenarios. A spin-echo, full-intensity acquired localized (SPECIAL) sequence was employed at 7 T utlizing three different inversion pulses: a hyperbolic secant (HS), a gradient offset independent adiabaticity (GOIA), and a wideband, uniform rate, smooth truncation (WURST) pulse. Metabolite concentrations, Cramér-Rao lower bounds (CRLBs) and coefficients of variation (CVs) were calculated. Both Bland-Altman analysis and a restricted maximum-likelihood estimation (REML) analysis were performed to estimate the different variance contributions of the repeatability and reproducibility of the measured concentration. A Bland-Altmann analysis of the spectral shape was performed to assess the variance of the spectral shape, independent of quantification model influences. RESULTS: For the used setup, minimal detectable changes of brain metabolite concentrations were found to be between 0.40 µmol/g and 2.23 µmol/g. CRLBs account for only 16 % to 74 % of the total variance of the metabolite concentrations. The application of gradient-modulated inversion pulses in SPECIAL led to slightly improved repeatability, but overall reproducibility appeared to be limited by differences in positioning, calibration, and other day-to-day variations throughout different sessions. CONCLUSION: A framework is introduced to estimate the precision of metabolite concentrations obtained by MRS in vivo, and the minimal detectable changes for 13 metabolite concentrations measured at 7 T using SPECIAL are obtained.


Assuntos
Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Reprodutibilidade dos Testes
15.
Psychol Med ; 52(6): 1175-1182, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-32878661

RESUMO

BACKGROUND: Tobacco smoking remains one of the leading causes of preventable illness and death and is heritable with complex underpinnings. Converging evidence suggests a contribution of the polygenic risk for smoking to the use of tobacco and other substances. Yet, the underlying brain mechanisms between the genetic risk and tobacco smoking remain poorly understood. METHODS: Genomic, neuroimaging, and self-report data were acquired from a large cohort of adolescents from the IMAGEN study (a European multicenter study). Polygenic risk scores (PGRS) for smoking were calculated based on a genome-wide association study meta-analysis conducted by the Tobacco and Genetics Consortium. We examined the interrelationships among the genetic risk for smoking initiation, brain structure, and the number of occasions of tobacco use. RESULTS: A higher smoking PGRS was significantly associated with both an increased number of occasions of tobacco use and smaller cortical volume of the right orbitofrontal cortex (OFC). Furthermore, reduced cortical volume within this cluster correlated with greater tobacco use. A subsequent path analysis suggested that the cortical volume within this cluster partially mediated the association between the genetic risk for smoking and the number of occasions of tobacco use. CONCLUSIONS: Our data provide the first evidence for the involvement of the OFC in the relationship between smoking PGRS and tobacco use. Future studies of the molecular mechanisms underlying tobacco smoking should consider the mediation effect of the related neural structure.


Assuntos
Estudo de Associação Genômica Ampla , Fumar , Humanos , Adolescente , Fumar/genética , Uso de Tabaco , Córtex Pré-Frontal , Fumar Tabaco , Estudos Multicêntricos como Assunto
16.
Psychol Med ; 52(14): 3086-3096, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-33769238

RESUMO

BACKGROUND: Sex-related differences in psychopathology are known phenomena, with externalizing and internalizing symptoms typically more common in boys and girls, respectively. However, the neural correlates of these sex-by-psychopathology interactions are underinvestigated, particularly in adolescence. METHODS: Participants were 14 years of age and part of the IMAGEN study, a large (N = 1526) community-based sample. To test for sex-by-psychopathology interactions in structural grey matter volume (GMV), we used whole-brain, voxel-wise neuroimaging analyses based on robust non-parametric methods. Psychopathological symptom data were derived from the Strengths and Difficulties Questionnaire (SDQ). RESULTS: We found a sex-by-hyperactivity/inattention interaction in four brain clusters: right temporoparietal-opercular region (p < 0.01, Cohen's d = -0.24), bilateral anterior and mid-cingulum (p < 0.05, Cohen's d = -0.18), right cerebellum and fusiform (p < 0.05, Cohen's d = -0.20) and left frontal superior and middle gyri (p < 0.05, Cohen's d = -0.26). Higher symptoms of hyperactivity/inattention were associated with lower GMV in all four brain clusters in boys, and with higher GMV in the temporoparietal-opercular and cerebellar-fusiform clusters in girls. CONCLUSIONS: Using a large, sex-balanced and community-based sample, our study lends support to the idea that externalizing symptoms of hyperactivity/inattention may be associated with different neural structures in male and female adolescents. The brain regions we report have been associated with a myriad of important cognitive functions, in particular, attention, cognitive and motor control, and timing, that are potentially relevant to understand the behavioural manifestations of hyperactive and inattentive symptoms. This study highlights the importance of considering sex in our efforts to uncover mechanisms underlying psychopathology during adolescence.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Caracteres Sexuais , Humanos , Masculino , Feminino , Adolescente , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Psicopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Agitação Psicomotora , Imageamento por Ressonância Magnética
17.
Mol Psychiatry ; 26(9): 4905-4918, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444868

RESUMO

Adolescence is a period of major brain reorganization shaped by biologically timed and by environmental factors. We sought to discover linked patterns of covariation between brain structural development and a wide array of these factors by leveraging data from the IMAGEN study, a longitudinal population-based cohort of adolescents. Brain structural measures and a comprehensive array of non-imaging features (relating to demographic, anthropometric, and psychosocial characteristics) were available on 1476 IMAGEN participants aged 14 years and from a subsample reassessed at age 19 years (n = 714). We applied sparse canonical correlation analyses (sCCA) to the cross-sectional and longitudinal data to extract modes with maximum covariation between neuroimaging and non-imaging measures. Separate sCCAs for cortical thickness, cortical surface area and subcortical volumes confirmed that each imaging phenotype was correlated with non-imaging features (sCCA r range: 0.30-0.65, all PFDR < 0.001). Total intracranial volume and global measures of cortical thickness and surface area had the highest canonical cross-loadings (|ρ| = 0.31-0.61). Age, physical growth and sex had the highest association with adolescent brain structure (|ρ| = 0.24-0.62); at baseline, further significant positive associations were noted for cognitive measures while negative associations were observed at both time points for prenatal parental smoking, life events, and negative affect and substance use in youth (|ρ| = 0.10-0.23). Sex, physical growth and age are the dominant influences on adolescent brain development. We highlight the persistent negative influences of prenatal parental smoking and youth substance use as they are modifiable and of relevance for public health initiatives.


Assuntos
Análise de Correlação Canônica , Imageamento por Ressonância Magnética , Adolescente , Adulto , Encéfalo/diagnóstico por imagem , Estudos Transversais , Humanos , Estudos Longitudinais , Adulto Jovem
18.
Mol Psychiatry ; 26(3): 1019-1028, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-31227801

RESUMO

There is an extensive body of literature linking ADHD to overweight and obesity. Research indicates that impulsivity features of ADHD account for a degree of this overlap. The neural and polygenic correlates of this association have not been thoroughly examined. In participants of the IMAGEN study, we found that impulsivity symptoms and body mass index (BMI) were associated (r = 0.10, n = 874, p = 0.014 FWE corrected), as were their respective polygenic risk scores (PRS) (r = 0.17, n = 874, p = 6.5 × 10-6 FWE corrected). We then examined whether the phenotypes of impulsivity and BMI, and the PRS scores of ADHD and BMI, shared common associations with whole-brain grey matter and the Monetary Incentive Delay fMRI task, which associates with reward-related impulsivity. A sparse partial least squared analysis (sPLS) revealed a shared neural substrate that associated with both the phenotypes and PRS scores. In a last step, we conducted a bias corrected bootstrapped mediation analysis with the neural substrate score from the sPLS as the mediator. The ADHD PRS associated with impulsivity symptoms (b = 0.006, 90% CIs = 0.001, 0.019) and BMI (b = 0.009, 90% CIs = 0.001, 0.025) via the neuroimaging substrate. The BMI PRS associated with BMI (b = 0.014, 95% CIs = 0.003, 0.033) and impulsivity symptoms (b = 0.009, 90% CIs = 0.001, 0.025) via the neuroimaging substrate. A common neural substrate may (in part) underpin shared genetic liability for ADHD and BMI and the manifestation of their (observable) phenotypic association.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Deficit de Atenção com Hiperatividade/genética , Índice de Massa Corporal , Humanos , Comportamento Impulsivo , Herança Multifatorial/genética , Recompensa
19.
Mol Psychiatry ; 26(8): 3884-3895, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-31811260

RESUMO

DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions.


Assuntos
Metilação de DNA , Epigenoma , Ilhas de CpG , Metilação de DNA/genética , Epigênese Genética/genética , Estudo de Associação Genômica Ampla , Humanos
20.
Cereb Cortex ; 31(6): 3021-3033, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33471126

RESUMO

Psychological androgyny has long been associated with greater cognitive flexibility, adaptive behavior, and better mental health, but whether a similar concept can be defined using neural features remains unknown. Using the neuroimaging data from 9620 participants, we found that global functional connectivity was stronger in the male brain before middle age but became weaker after that, when compared with the female brain, after systematic testing of potentially confounding effects. We defined a brain gender continuum by estimating the likelihood of an observed functional connectivity matrix to represent a male brain. We found that participants mapped at the center of this continuum had fewer internalizing symptoms compared with those at the 2 extreme ends. These findings suggest a novel hypothesis proposing that there exists a neuroimaging concept of androgyny using the brain gender continuum, which may be associated with better mental health in a similar way to psychological androgyny.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Caracteres Sexuais , Adulto , Idoso , Encéfalo/fisiologia , Bases de Dados Factuais/tendências , Feminino , Humanos , Imageamento por Ressonância Magnética/tendências , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiologia , Neuroimagem/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA