Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 13(11): e1006696, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29112952

RESUMO

Klebsiella pneumoniae is a significant cause of nosocomial pneumonia and an alarming pathogen owing to the recent isolation of multidrug resistant strains. Understanding of immune responses orchestrating K. pneumoniae clearance by the host is of utmost importance. Here we show that type I interferon (IFN) signaling protects against lung infection with K. pneumoniae by launching bacterial growth-controlling interactions between alveolar macrophages and natural killer (NK) cells. Type I IFNs are important but disparate and incompletely understood regulators of defense against bacterial infections. Type I IFN receptor 1 (Ifnar1)-deficient mice infected with K. pneumoniae failed to activate NK cell-derived IFN-γ production. IFN-γ was required for bactericidal action and the production of the NK cell response-amplifying IL-12 and CXCL10 by alveolar macrophages. Bacterial clearance and NK cell IFN-γ were rescued in Ifnar1-deficient hosts by Ifnar1-proficient NK cells. Consistently, type I IFN signaling in myeloid cells including alveolar macrophages, monocytes and neutrophils was dispensable for host defense and IFN-γ activation. The failure of Ifnar1-deficient hosts to initiate a defense-promoting crosstalk between alveolar macrophages and NK cell was circumvented by administration of exogenous IFN-γ which restored endogenous IFN-γ production and restricted bacterial growth. These data identify NK cell-intrinsic type I IFN signaling as essential driver of K. pneumoniae clearance, and reveal specific targets for future therapeutic exploitations.


Assuntos
Interferon Tipo I/imunologia , Células Matadoras Naturais/imunologia , Infecções por Klebsiella/imunologia , Macrófagos Alveolares/imunologia , Transdução de Sinais/imunologia , Animais , Resistência a Múltiplos Medicamentos/imunologia , Klebsiella pneumoniae/crescimento & desenvolvimento , Klebsiella pneumoniae/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor Cross-Talk/imunologia , Infecções Respiratórias/imunologia
2.
Mol Syst Biol ; 12(5): 868, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27178967

RESUMO

Precise regulation of mRNA decay is fundamental for robust yet not exaggerated inflammatory responses to pathogens. However, a global model integrating regulation and functional consequences of inflammation-associated mRNA decay remains to be established. Using time-resolved high-resolution RNA binding analysis of the mRNA-destabilizing protein tristetraprolin (TTP), an inflammation-limiting factor, we qualitatively and quantitatively characterize TTP binding positions in the transcriptome of immunostimulated macrophages. We identify pervasive destabilizing and non-destabilizing TTP binding, including a robust intronic binding, showing that TTP binding is not sufficient for mRNA destabilization. A low degree of flanking RNA structuredness distinguishes occupied from silent binding motifs. By functionally relating TTP binding sites to mRNA stability and levels, we identify a TTP-controlled switch for the transition from inflammatory into the resolution phase of the macrophage immune response. Mapping of binding positions of the mRNA-stabilizing protein HuR reveals little target and functional overlap with TTP, implying a limited co-regulation of inflammatory mRNA decay by these proteins. Our study establishes a functionally annotated and navigable transcriptome-wide atlas (http://ttp-atlas.univie.ac.at) of cis-acting elements controlling mRNA decay in inflammation.


Assuntos
Lipopolissacarídeos/farmacologia , Macrófagos/imunologia , RNA Mensageiro/química , Tristetraprolina/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Estabilidade de RNA , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
3.
J Clin Invest ; 127(6): 2051-2065, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28504646

RESUMO

Protective responses against pathogens require a rapid mobilization of resting neutrophils and the timely removal of activated ones. Neutrophils are exceptionally short-lived leukocytes, yet it remains unclear whether the lifespan of pathogen-engaged neutrophils is regulated differently from that in the circulating steady-state pool. Here, we have found that under homeostatic conditions, the mRNA-destabilizing protein tristetraprolin (TTP) regulates apoptosis and the numbers of activated infiltrating murine neutrophils but not neutrophil cellularity. Activated TTP-deficient neutrophils exhibited decreased apoptosis and enhanced accumulation at the infection site. In the context of myeloid-specific deletion of Ttp, the potentiation of neutrophil deployment protected mice against lethal soft tissue infection with Streptococcus pyogenes and prevented bacterial dissemination. Neutrophil transcriptome analysis revealed that decreased apoptosis of TTP-deficient neutrophils was specifically associated with elevated expression of myeloid cell leukemia 1 (Mcl1) but not other antiapoptotic B cell leukemia/lymphoma 2 (Bcl2) family members. Higher Mcl1 expression resulted from stabilization of Mcl1 mRNA in the absence of TTP. The low apoptosis rate of infiltrating TTP-deficient neutrophils was comparable to that of transgenic Mcl1-overexpressing neutrophils. Our study demonstrates that posttranscriptional gene regulation by TTP schedules the termination of the antimicrobial engagement of neutrophils. The balancing role of TTP comes at the cost of an increased risk of bacterial infections.


Assuntos
Apoptose/imunologia , Infecções Estreptocócicas/metabolismo , Tristetraprolina/fisiologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Ligação Proteica , Estabilidade de RNA , Infecções Estreptocócicas/imunologia , Streptococcus pyogenes/imunologia , Transcriptoma/imunologia
4.
Front Immunol ; 7: 652, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28082986

RESUMO

Defense against bacterial infections requires activation of the immune response as well as timely reestablishment of tissue and immune homeostasis. Instauration of homeostasis is critical for tissue regeneration, wound healing, and host recovery. Recent studies revealed that severe infectious diseases frequently result from failures in homeostatic processes rather than from inefficient pathogen eradication. Type I interferons (IFN) appear to play a key role in such processes. Remarkably, the involvement of type I IFNs in the regulation of immune and tissue homeostasis upon bacterial insult may have beneficial or detrimental consequences for the host. The reasons for such ambivalent function of type I IFNs are not understood. The disparate effects of type I IFNs on bacterial infections are in marked contrast to their well-established protective roles in most viral infections. In this review, we will focus on type I IFN effector mechanisms which balance processes involved in immune and tissue homeostasis during specific bacterial infections and highlight the most important missing links in our understanding of type I IFN functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA