Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Genes Cells ; 29(6): 451-455, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38553254

RESUMO

The 10th International MDM2 Workshop was held at the National Cancer Center Research Institute (NCCRI) in Tokyo, Japan, from October 15 to 18, 2023. It attracted 166 participants from 12 countries. The meeting featured 52 talks and 41 poster presentations. In the first special session, six invited speakers gave educational and outstanding talks on breakthroughs in MDM2 research. Three keynote speakers presented emerging p53-independent functions of MDM2/MDM4, functional association of MDM2/p53 with cancer immunity, and drug discovery targeting the MDM2/MDM4-p53 pathway. Additionally, 19 invited speakers introduced their new findings. Twenty-one presenters, many of whom were young investigators, postdocs, and students, were selected from submitted abstracts and reported their exciting and unpublished results. For poster presenters, outstanding poster awards were given to the best presenters. There were many inspiring questions and discussions throughout the meeting. Social events like a welcome party, a workshop dinner, and an optional tour enabled further scientific interactions among the participants. The meeting successfully provided an exciting platform for scientific exchange. The experience gained from organizing this meeting will be handed over to the next organizers of the 11th International MDM2 Workshop.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Neoplasias/metabolismo , Ásia , Animais
2.
Pharmacol Res ; 199: 106990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984506

RESUMO

Resistance to temozolomide (TMZ), the frontline chemotherapeutic agent for glioblastoma (GBM), has emerged as a formidable obstacle, underscoring the imperative to identify alternative therapeutic strategies to improve patient outcomes. In this study, we comprehensively evaluated a novel agent, O6-methyl-2'-deoxyguanosine-5'-triphosphate (O6-methyl-dGTP) for its anti-GBM activity both in vitro and in vivo. Notably, O6-methyl-dGTP exhibited pronounced cytotoxicity against GBM cells, including those resistant to TMZ and overexpressing O6-methylguanine-DNA methyltransferase (MGMT). Mechanistic investigations revealed that O6-methyl-dGTP could be incorporated into genomic DNA, disrupting nucleotide pools balance, and inducing replication stress, resulting in S-phase arrest and DNA damage. The compound exerted its anti-tumor properties through the activation of AIF-mediated apoptosis and the parthanatos pathway. In vivo studies using U251 and Ln229 cell xenografts supported the robust tumor-inhibitory capacity of O6-methyl-dGTP. In an orthotopic transplantation model with U87MG cells, O6-methyl-dGTP showcased marginally superior tumor-suppressive activity compared to TMZ. In summary, our research, for the first time, underscores the potential of O6-methyl-dGTP as an effective candidate against GBM, laying a robust scientific groundwork for its potential clinical adoption in GBM treatment regimens.


Assuntos
Glioblastoma , Polifosfatos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Nucleosídeos/farmacologia , Nucleosídeos/uso terapêutico , Caspases , Linhagem Celular Tumoral , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Nucleotídeos , O(6)-Metilguanina-DNA Metiltransferase/metabolismo , O(6)-Metilguanina-DNA Metiltransferase/farmacologia , O(6)-Metilguanina-DNA Metiltransferase/uso terapêutico , Desoxiguanosina/farmacologia , Desoxiguanosina/uso terapêutico , DNA , Resistencia a Medicamentos Antineoplásicos
3.
Nanomedicine ; 56: 102732, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199451

RESUMO

Among the tumor suppressor genes, TP53 is the most frequently mutated in human cancers, and most mutations are missense mutations causing production of mutant p53 (mutp53) proteins. TP53 mutations not only results in loss of function (LOH) as a transcription factor and a tumor suppressor, but also gain wild-type p53 (WTp53)-independent oncogenic functions that enhance cancer metastasis and progression (Yamamoto and Iwakuma, 2018; Zhang et al., 2022). TP53 has extensively been studied as a therapeutic target as well as for drug development and therapies, however with limited success. Achieving targeted therapies for restoration of WTp53 function and depletion or repair of mutant p53 (mutp53) will have far reaching implication in cancer treatment and therapies. This review briefly discusses the role of p53 mutation in cancer and the therapeutic potential of restoring WTp53 through the advances in mRNA nanomedicine.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , RNA Mensageiro/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Fatores de Transcrição/genética , Linhagem Celular Tumoral
4.
Br J Cancer ; 124(1): 166-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33024269

RESUMO

BACKGROUND: Previously, we identified ITIH5 as a suppressor of pancreatic ductal adenocarcinoma (PDAC) metastasis in experimental models. Expression of ITIH5 correlated with decreased cell motility, invasion and metastasis without significant inhibition of primary tumour growth. Here, we tested whether secretion of ITIH5 is required to suppress liver metastasis and sought to understand the role of ITIH5 in human PDAC. METHODS: We expressed mutant ITIH5 with deletion of the N-terminal secretion sequence (ITIH5Δs) in highly metastatic human PDAC cell lines. We used a human tissue microarray (TMA) to compare ITIH5 levels in uninvolved pancreas, primary and metastatic PDAC. RESULTS: Secretion-deficient ITIH5Δs was sufficient to suppress liver metastasis. Similar to secreted ITIH5, expression of ITIH5Δs was associated with rounded cell morphology, reduced cell motility and reduction of liver metastasis. Expression of ITIH5 is low in both human primary PDAC and matched metastases. CONCLUSIONS: Metastasis suppression by ITIH5 may be mediated by an intracellular mechanism. In human PDAC, loss of ITIH5 may be an early event and ITIH5-low PDAC cells in primary tumours may be selected for liver metastasis. Further defining the ITIH5-mediated pathway in PDAC could establish future therapeutic exploitation of this biology and reduce morbidity and mortality associated with PDAC metastasis.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Hepáticas/secundário , Invasividade Neoplásica/patologia , Neoplasias Pancreáticas/patologia , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Animais , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Xenoenxertos , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas
5.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948322

RESUMO

Heat shock proteins (HSPs) are molecular chaperones that assist diverse cellular activities including protein folding, intracellular transportation, assembly or disassembly of protein complexes, and stabilization or degradation of misfolded or aggregated proteins. HSP40, also known as J-domain proteins (JDPs), is the largest family with over fifty members and contains highly conserved J domains responsible for binding to HSP70 and stimulation of the ATPase activity as a co-chaperone. Tumor suppressor p53 (p53), the most frequently mutated gene in human cancers, is one of the proteins that functionally interact with HSP40/JDPs. The majority of p53 mutations are missense mutations, resulting in acquirement of unexpected oncogenic activities, referred to as gain of function (GOF), in addition to loss of the tumor suppressive function. Moreover, stability and levels of wild-type p53 (wtp53) and mutant p53 (mutp53) are crucial for their tumor suppressive and oncogenic activities, respectively. However, the regulatory mechanisms of wtp53 and mutp53 are not fully understood. Accumulating reports demonstrate regulation of wtp53 and mutp53 levels and/or activities by HSP40/JDPs. Here, we summarize updated knowledge related to the link of HSP40/JDPs with p53 and cancer signaling to improve our understanding of the regulation of tumor suppressive wtp53 and oncogenic mutp53 GOF activities.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos
6.
Gastroenterology ; 157(6): 1646-1659.e11, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31442435

RESUMO

BACKGROUND & AIMS: The histone lysine demethylase 3A (KDM3A) demethylates H3K9me1 and H3K9Me2 to increase gene transcription and is upregulated in tumors, including pancreatic tumors. We investigated its activities in pancreatic cancer cell lines and its regulation of the gene encoding doublecortin calmodulin-like kinase 1 (DCLK1), a marker of cancer stem cells. METHODS: We knocked down KDM3A in MiaPaCa-2 and S2-007 pancreatic cancer cell lines and overexpressed KDM3A in HPNE cells (human noncancerous pancreatic ductal cell line); we evaluated cell migration, invasion, and spheroid formation under hypoxic and normoxic conditions. Nude mice were given orthotopic injections of S2-007 cells, with or without (control) knockdown of KDM3A, and HPNE cells, with or without (control) overexpression of KDM3A; tumor growth was assessed. We analyzed pancreatic tumor tissues from mice and pancreatic cancer cell lines by immunohistochemistry and immunoblotting. We performed RNA-sequencing analysis of MiaPaCa-2 and S2-007 cells with knockdown of KDM3A and evaluated localization of DCLK1 and KDM3A by immunofluorescence. We analyzed the cancer genome atlas for levels of KDM3A and DCLK1 messenger RNA in human pancreatic ductal adenocarcinoma (PDAC) tissues and association with patient survival time. RESULTS: Levels of KDM3A were increased in human pancreatic tumor tissues and cell lines, compared with adjacent nontumor pancreatic tissues, such as islet and acinar cells. Knockdown of KDM3A in S2-007 cells significantly reduced colony formation, invasion, migration, and spheroid formation, compared with control cells, and slowed growth of orthotopic tumors in mice. We identified KDM3A-binding sites in the DCLK1 promoter; S2-007 cells with knockdown of KDM3A had reduced levels of DCLK1. HPNE cells that overexpressed KDM3A formed foci and spheres in culture and formed tumors and metastases in mice, whereas control HPNE cells did not. Hypoxia induced sphere formation and increased levels of KDM3A in S2-007 cells and in HPNE cells that overexpressed DCLK1, but not control HPNE cells. Levels of KDM3A and DCLK1 messenger RNA were higher in human PDAC than nontumor pancreatic tissues and correlated with shorter survival times of patients. CONCLUSIONS: We found human PDAC samples and pancreatic cancer cell lines to overexpress KDM3A. KDM3A increases expression of DCLK1, and levels of both proteins are increased in human PDAC samples. Knockdown of KDM3A in pancreatic cancer cell lines reduced their invasive and sphere-forming activities in culture and formation of orthotopic tumors in mice. Hypoxia increased expression of KDM3A in pancreatic cancer cells. Strategies to disrupt this pathway might be developed for treatment of pancreatic cancer.


Assuntos
Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Neoplasias Pancreáticas/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Metilação de DNA , Conjuntos de Dados como Assunto , Quinases Semelhantes a Duplacortina , Feminino , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Análise de Sobrevida , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
7.
J Biol Chem ; 292(41): 16833-16846, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28842496

RESUMO

Nischarin (Nisch) is a key protein functioning as a molecular scaffold and thereby hosting interactions with several protein partners. To explore the physiological importance of Nisch, here we generated Nisch loss-of-function mutant mice and analyzed their metabolic phenotype. Nisch-mutant embryos exhibited delayed development, characterized by small size and attenuated weight gain. We uncovered the reason for this phenotype by showing that Nisch binds to and inhibits the activity of AMP-activated protein kinase (AMPK), which regulates energy homeostasis by suppressing anabolic and activating catabolic processes. The Nisch mutations enhanced AMPK activation and inhibited mechanistic target of rapamycin signaling in mouse embryonic fibroblasts as well as in muscle and liver tissues of mutant mice. Nisch-mutant mice also exhibited increased rates of glucose oxidation with increased energy expenditure, despite reduced overall food intake. Moreover, the Nisch-mutant mice had reduced expression of liver markers of gluconeogenesis associated with increased glucose tolerance. As a result, these mice displayed decreased growth and body weight. Taken together, our results indicate that Nisch is an important AMPK inhibitor and a critical regulator of energy homeostasis, including lipid and glucose metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético , Gluconeogênese , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , Glucose/genética , Glucose/metabolismo , Humanos , Receptores de Imidazolinas , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/patologia , Camundongos , Camundongos Mutantes , Mutação , Oxirredução , Ligação Proteica
9.
Int J Cancer ; 139(3): 628-38, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27012470

RESUMO

Therapeutic effectiveness against metastatic or even locally advanced pancreatic ductal adenocarcinoma (PDAC) is dismal, with 5-year survival less than 5%. Even in patients who undergo potentially curative resection, most patients' tumors recur in the liver. Improving therapies targeting or preventing liver metastases is crucial for improving prognosis. To identify genes suppressing metastasis, a genome-wide shRNA screen was done using the human non-metastatic PDAC cell line, S2-028. After identification of candidates, functional validation was done using intrasplenic and orthotopic injections in athymic mice. HMP19 strongly inhibited metastasis but also partially attenuated tumor growth in the pancreas. Knockdown of HMP19 increased localization of activated ERK1/2 in the nucleus, corresponding to facilitated cell proliferation, decreased p27(Kip1) and increased cyclin E1. Over-expression of HMP19 exerted the opposite effects. Using a tissue microarray of 84 human PDAC, patients with low expression of HMP19 showed significantly higher incidence of liver metastasis (p = 0.0175) and worse prognosis (p = 0.018) after surgery. HMP19, a new metastasis/tumor suppressor in PDAC, appears to alter signaling that leads to cell proliferation and appears to offer prognostic value in human PDAC.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Nus , Metástase Neoplásica , Carga Tumoral
10.
Int J Mol Sci ; 17(12)2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27973397

RESUMO

Enhanced proliferation and survival are common features of cancer cells. Cancer cells are metabolically reprogrammed which aids in their survival in nutrient-poor environments. Indeed, changes in metabolism of glucose and glutamine are essential for tumor progression. Thus, metabolic reprogramming is now well accepted as a hallmark of cancer. Recent findings suggest that reprogramming of lipid metabolism also occurs in cancer cells, since lipids are used for biosynthesis of membranes, post-translational modifications, second messengers for signal transduction, and as a source of energy during nutrient deprivation. The tumor suppressor p53 is a transcription factor that controls the expression of proteins involved in cell cycle arrest, DNA repair, apoptosis, and senescence. p53 also regulates cellular metabolism, which appears to play a key role in its tumor suppressive activities. In this review article, we summarize non-canonical functions of wild-type and mutant p53 on lipid metabolism and discuss their association with cancer progression.


Assuntos
Metabolismo dos Lipídeos , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Proteínas Mutantes/metabolismo , Proteínas de Neoplasias/metabolismo
11.
Int J Mol Sci ; 17(12)2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27941671

RESUMO

Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.


Assuntos
Morte Celular/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Autofagia/genética , Autofagia/fisiologia , Morte Celular/genética , Humanos , Necrose/metabolismo , Piroptose/genética , Piroptose/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/genética
12.
Anal Biochem ; 486: 70-4, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26142221

RESUMO

Osteosarcoma, the most common type of primary bone cancer, is the second highest cause of cancer-related death in pediatric patients. To understand the mechanisms behind osteosarcoma progression and to discover novel therapeutic strategies for this disease, a reliable and appropriate mouse model is essential. For this purpose, osteosarcoma cells need to be injected into the bone marrow. Previously, the intratibial and intrafemoral injection methods were reported; however, the major drawback of these methods is the potential leakage of tumor cells from the injection site during or after these procedures. To overcome this, we have established an improved method to minimize leakage in an orthotopic mouse model of osteosarcoma. By taking advantage of the anatomical benefits of the femur with less bowing and larger medullary cavity than those of the tibia, osteosarcoma cells are injected directly into the femoral cavity following reaming of its intramedullary space. To prevent potential leakage of tumor cells during and after the surgery, the injection site is sealed with bone wax. This method requires a minor surgery of approximately 15min under anesthesia. Our established orthotopic osteosarcoma model could serve as a valuable and reliable tool for examining progression of various types of bone tumors.


Assuntos
Neoplasias Ósseas/patologia , Transformação Celular Neoplásica , Fêmur , Injeções/métodos , Osteossarcoma/patologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos
13.
Proc Natl Acad Sci U S A ; 108(29): 11995-2000, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730132

RESUMO

Mdm2 and Mdm4 are homologous RING domain-containing proteins that negatively regulate the tumor suppressor p53 under physiological and stress conditions. The RING domain of Mdm2 encodes an E3-ubiquitin ligase that promotes p53 degradation. In addition, Mdm2 and Mdm4 interact through their respective RING domains. The in vivo significance of Mdm2-Mdm4 heterodimerization in regulation of p53 function is unknown. In this study, we generated an Mdm4 conditional allele lacking the RING domain to investigate its role in Mdm2 and p53 regulation. Our results demonstrate that homozygous deletion of the Mdm4 RING domain results in prenatal lethality. Mechanistically, Mdm2-Mdm4 heterodimerization is critical for inhibiting lethal p53 activation during early embryogenesis. However, Mdm2-Mdm4 interaction is dispensable for regulating p53 activity as well as the stability of Mdm2 and p53 at later stages of development. We propose that Mdm4 is a key cofactor of Mdm2 that inhibits p53 activity primarily during early embryogenesis but is dispensable for regulating p53 and Mdm2 stability in the adult mouse.


Assuntos
Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Multimerização Proteica/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Southern Blotting , Radioisótopos de Césio , Primers do DNA/genética , Desenvolvimento Embrionário/genética , Genótipo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
14.
Cancer Metastasis Rev ; 31(3-4): 633-40, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22684342

RESUMO

MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.


Assuntos
Proteínas de Transporte/fisiologia , Metástase Neoplásica/prevenção & controle , Proteínas Supressoras de Tumor/fisiologia , Actinina/antagonistas & inibidores , Actinina/fisiologia , Animais , Proteínas de Transporte/química , Movimento Celular , Humanos , Camundongos , Proteína Supressora de Tumor p53/fisiologia
15.
Cancers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672377

RESUMO

Mutations in the tumor suppressor p53 (p53) promote cancer progression. This is mainly due to loss of function (LOS) as a tumor suppressor, dominant-negative (DN) activities of missense mutant p53 (mutp53) over wild-type p53 (wtp53), and wtp53-independent oncogenic activities of missense mutp53 by interacting with other tumor suppressors or oncogenes (gain of function: GOF). Since p53 mutations occur in ~50% of human cancers and rarely occur in normal tissues, p53 mutations are cancer-specific and ideal therapeutic targets. Approaches to target p53 mutations include (1) restoration or stabilization of wtp53 conformation from missense mutp53, (2) rescue of p53 nonsense mutations, (3) depletion or degradation of mutp53 proteins, and (4) induction of p53 synthetic lethality or targeting of vulnerabilities imposed by p53 mutations (enhanced YAP/TAZ activities) or deletions (hyperactivated retrotransposons). This review article focuses on clinically available FDA-approved drugs and drugs in clinical trials that target p53 mutations and summarizes their mechanisms of action and activities to suppress cancer progression.

16.
Cancers (Basel) ; 15(18)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37760565

RESUMO

MTBP is implicated in cell cycle progression, DNA replication, and cancer metastasis. However, the function of MTBP remains enigmatic and is dependent on cellular contexts and its cellular localization. To understand the in vivo physiological role of MTBP, it is important to generate Mtbp knockout mice. However, complete deletion of the Mtbp gene in mice results in early embryonic lethality, while its heterozygous deletion shows modest biological phenotypes, including enhanced cancer metastasis. To overcome this and better characterize the in vivo physiological function of MTBP, we, for the first time, generated mice that carry an Mtbp hypomorphic allele (MtbpH) in which Mtbp protein is expressed at approximately 30% of that in the wild-type allele. We treated wild-type, Mtbp+/-, and MtbpH/- mice with a liver carcinogen, diethylnitrosamine (DEN), and found that the MtbpH/- mice showed worse overall survival when compared to the wild-type mice. Consistent with previous reports using human liver cancer cells, mouse embryonic fibroblasts (MEFs) from the MtbpH/- mice showed an increase in the nuclear localization of p-Erk1/2 and migratory potential. Thus, MtbpH/- mice and cells from MtbpH/- mice are valuable to understand the in vivo physiological role of Mtbp and validate the diverse functions of MTBP that have been observed in human cells.

17.
Free Radic Biol Med ; 196: 53-64, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36640852

RESUMO

Oxidative stress can attack precursor nucleotides, resulting in nucleic acid damage in cells. It remains unclear how 8-oxo-dGTP and 8-oxoGTP, oxidized forms of dGTP and GTP, respectively, could affect DNA or RNA oxidation levels and tumor development. To address this, we intravenously administered 8-oxo-dGTP and 8-oxoGTP to wild-type and MTH1-knockout mice. 8-oxoGTP administration increased frequency of tumor incidence, which is more prominent in MTH1-knockout mice. However, 8-oxo-dGTP treatment rather reduced tumor development regardless of the mouse genotype. The tumor suppressive effects of 8-oxo-dGTP were further confirmed using xenograft and C57/6J-ApcMin/Nju mouse models. Mechanistically, 8-oxo-dGTP increased the 8-oxo-dG contents in DNA and DNA strand breakage, induced cell cycle arrest in S phase and apoptosis mediated by AIF, eventually leading to reduced tumor incidence. These results suggest distinct roles of 8-oxo-dGTP and 8-oxoGTP in tumor development.


Assuntos
Neoplasias , Monoéster Fosfórico Hidrolases , Humanos , Animais , Camundongos , Monoéster Fosfórico Hidrolases/genética , Fase S , Nucleotídeos de Desoxiguanina/metabolismo , Neoplasias/genética , DNA/metabolismo , Camundongos Knockout , Apoptose , Enzimas Reparadoras do DNA/genética
18.
Diabetes Metab Syndr ; 17(12): 102907, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980723

RESUMO

AIMS: Glucagon-like peptide 1 (GLP-1) is produced by the L subtype of enteroendocrine cells (EECs). Patients with type 2 diabetes (T2D) exhibit reduced incretin effect, but the pathophysiology and functional change of the L-cells remain unclear. Deciphering the mechanisms of the biological changes in L-cells under T2D conditions may assist in the research of gut-based strategies for T2D therapy. METHODS: We investigated the fasting serum GLP-1 levels and the distribution of colonic L-cells in young and aged participants with and without T2D. Additionally, we established an aged male T2D Wistar rat model subjected to a long-term high-fat and high-fructose (HFHF) diet. Histological investigations and single-cell RNA sequencing (scRNA-seq) analyses were performed to explore the mechanisms underlying functional changes in the colonic EECs. RESULTS: We observed a decline in circulating GLP-1 levels and a reduced number of colonic L-cells in elderly patients with T2D. The mechanisms underlying impaired L-cell formation and disturbed GLP-1 production were revealed using aged T2D rats induced by a long-term HFHF diet. The scRNA-seq results showed that the transcription factors that regulate L-cell commitment, such as Foxa1, were downregulated, and the expression of genes that participate in encoding GLP-1, GLP-1 posttranslational processing, hormone secretion, and nutrient sensing was disturbed. CONCLUSIONS: Taken together, the reduced L-cell lineage commitment and disturbed L-cell functions might be the major cause of the reduced GLP-1 production in aged populations with T2D. Our study provides new insights for identifying novel targets in colonic L-cells for improving endogenous GLP-1 production.


Assuntos
Diabetes Mellitus Tipo 2 , Peptídeo 1 Semelhante ao Glucagon , Humanos , Camundongos , Idoso , Masculino , Ratos , Animais , Células L , Ratos Wistar , Células Enteroendócrinas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Fator 3-alfa Nuclear de Hepatócito/farmacologia
19.
Cancers (Basel) ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190159

RESUMO

The perinucleolar compartment (PNC) is a small nuclear body that plays important role in tumorigenesis. PNC prevalence correlates with poor prognosis and cancer metastasis. Its expression in pediatric Ewing sarcoma (EWS) has not previously been documented. In this study, we analyzed 40 EWS tumor cases from Caucasian and Hispanic patients for PNC prevalence by immunohistochemical detection of polypyrimidine tract binding protein and correlated the prevalence with dysregulated microRNA profiles. EWS cases showed staining ranging from 0 to 100%, which were categorized as diffuse (≥77%, n = 9, high PNC) or not diffuse (<77%, n = 31) for low PNC. High PNC prevalence was significantly higher in Hispanic patients from the US (n = 6, p = 0.017) and in patients who relapsed with metastatic disease (n = 4; p = 0.011). High PNC was associated with significantly shorter disease-free survival and early recurrence compared to those with low PNC. Using NanoString digital profiling, high PNC tumors revealed upregulation of eight and downregulation of 18 microRNAs. Of these, miR-320d and miR-29c-3p had the most significant differential expression in tumors with high PNC. In conclusion, this is the first study that demonstrates the presence of PNC in EWS, reflecting its utility as a predictive biomarker associated with tumor metastasis, specific microRNA profile, Hispanic ethnic origin, and poor prognosis.

20.
FASEB J ; 25(7): 2387-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21471252

RESUMO

Emerging evidence suggests that the tumor suppressor p53 is also a crucial regulator for many physiological processes. Previous observations indicate that p53 suppresses inflammation by inhibiting inflammatory antigen-presenting cells. To investigate the potential role of p53 in autoimmune effector T cells, we generated p53(null)CD45.1 mice by crossing p53(null)CD45.2 and CD45.1 mice. We demonstrate that p53(null)CD45.1 mice spontaneously developed autoimmunity, with a significant increase in IL-17-producing Th17 effectors in their lymph nodes (4.7 ± 1.0%) compared to the age-matched counterparts (1.9 ± 0.8% for p53(null)CD45.2, 1.1 ± 0.2% for CD45.1, and 0.5 ± 0.1% for CD45.2 mice). Likewise, p53(null)CD45.1 mice possess highly elevated serum levels of inflammatory cytokines IL-17 and IL-6. This enhanced Th17 response results largely from an increased sensitivity of p53(null)CD45.1 T cells to IL-6-induced STAT3 phosphorylation. Administration of STAT3 inhibitor S31-201 (IC50 of 38.0 ± 7.2 µM for IL-6-induced STAT3 phosphorylation), but not PBS control, to p53(null)CD45.1 mice suppressed Th17 effectors and alleviated autoimmune pathology. This is the first report revealing that p53 activity in T cells suppresses autoimmunity by controlling Th17 effectors. This study suggests that p53 serves as a guardian of immunological functions and that the p53-STAT3-Th17 axis might be a therapeutic target for autoimmunity.


Assuntos
Autoimunidade/imunologia , Interleucina-17/imunologia , Fator de Transcrição STAT3/imunologia , Proteína Supressora de Tumor p53/imunologia , Animais , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Interleucina-17/metabolismo , Interleucina-6/imunologia , Interleucina-6/metabolismo , Interleucina-6/farmacologia , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Antígenos Comuns de Leucócito/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Masculino , Camundongos , Camundongos Congênicos , Camundongos Knockout , NF-kappa B/imunologia , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/imunologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th17/imunologia , Células Th17/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA