Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 42(12): 2448-2473, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35121636

RESUMO

Signal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1; also known as SPAR1) has been proposed to regulate synaptic functions that are important in maintaining normal neuronal activities, such as regulating spine growth and synaptic scaling, as a component of the PSD-95/NMDA-R-complex. However, its physiological role remains poorly understood. Here, we performed expression analyses using super-resolution microscopy (SRM) in mouse brain and demonstrated that SIPA1L1 is mainly localized to general submembranous regions in neurons, but surprisingly, not to PSD. Our screening for physiological interactors of SIPA1L1 in mouse brain identified spinophilin and neurabin-1, regulators of G-protein-coupled receptor (GPCR) signaling, but rejected PSD-95/NMDA-R-complex components. Furthermore, Sipa1l1-/- mice showed normal spine size distribution and NMDA-R-dependent synaptic plasticity. Nevertheless, Sipa1l1-/- mice showed aberrant responses to α2-adrenergic receptor (a spinophilin target) or adenosine A1 receptor (a neurabin-1 target) agonist stimulation, and striking behavioral anomalies, such as hyperactivity, enhanced anxiety, learning impairments, social interaction deficits, and enhanced epileptic seizure susceptibility. Male mice were used for all experiments. Our findings revealed unexpected properties of SIPA1L1, suggesting a possible association of SIPA1L1 deficiency with neuropsychiatric disorders related to dysregulated GPCR signaling, such as epilepsy, attention deficit hyperactivity disorder (ADHD), autism, or fragile X syndrome (FXS).SIGNIFICANCE STATEMENT Signal-induced proliferation-associated 1 (SIPA1)-like 1 (SIPA1L1) is thought to regulate essential synaptic functions as a component of the PSD-95/NMDA-R-complex. In our screening for physiological SIPA1L1-interactors, we identified G-protein-coupled receptor (GPCR)-signaling regulators. Moreover, SIPA1L1 knock-out (KO) mice showed striking behavioral anomalies, which may be relevant to GPCR signaling. Our findings revealed an unexpected role of SIPA1L1, which may open new avenues for research on neuropsychiatric disorders that involve dysregulated GPCR signaling. Another important aspect of this paper is that we showed effective methods for checking PSD association and identifying native protein interactors that are difficult to solubilize. These results may serve as a caution for future claims about interacting proteins and PSD proteins, which could eventually save time and resources for researchers and avoid confusion in the field.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , N-Metilaspartato , Proteínas do Tecido Nervoso , Animais , Proteína 4 Homóloga a Disks-Large , Masculino , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor A1 de Adenosina , Receptores Acoplados a Proteínas G/metabolismo
2.
Gan To Kagaku Ryoho ; 50(3): 327-331, 2023 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-36927901

RESUMO

A 52-year-old female with stage Ⅳ, bilateral, HER2-positive, breast cancer as well as bilateral axillary lymph node(LN) metastasis and bilateral pulmonary metastasis was administered trastuzumab plus pertuzumab plus docetaxel as a standard chemotherapy. After this treatment the right breast cancer, right axillary LN metastasis, and bilateral pulmonary metastases contracted, while the left breast cancer and left axillary LN metastasis expanded. Trastuzumab emtansine was then administered, and the left axillary LN metastasis contracted, however, the left breast cancer expanded, resulting in marked breast engorgement. When trastuzumab deruxtecan(T-DXd)was administered, the left breast cancer contracted for the first time during the overall treatment process, and the signs of breast inflammation disappeared. Other lesions showed no recrudescence. T-DXd was administered seven times, and, at the stage of maximum contraction during the treatment period, a total left mastectomy and left axillary LN dissection were performed. Pathological examination then confirmed that tumor cells were no longer present in the left breast and left axillary LN. In this case T-DXd was highly effective for the local treatment of intractable, HER2-positive, breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma Ductal , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Receptor ErbB-2 , Mastectomia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Recidiva Local de Neoplasia/cirurgia , Trastuzumab , Carcinoma Ductal/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 113(5): 1273-8, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26768845

RESUMO

Many long noncoding RNAs (lncRNAs) are reported to be dysregulated in human cancers and play critical roles in tumor development and progression. Furthermore, it has been reported that many lncRNAs regulate gene expression by recruiting chromatin remodeling complexes to specific genomic loci or by controlling transcriptional or posttranscriptional processes. Here we show that an lncRNA termed UPAT [ubiquitin-like plant homeodomain (PHD) and really interesting new gene (RING) finger domain-containing protein 1 (UHRF1) Protein Associated Transcript] is required for the survival and tumorigenicity of colorectal cancer cells. UPAT interacts with and stabilizes the epigenetic factor UHRF1 by interfering with its ß-transducin repeat-containing protein (TrCP)-mediated ubiquitination. Furthermore, we demonstrate that UHRF1 up-regulates Stearoyl-CoA desaturase 1 and Sprouty 4, which are required for the survival of colon tumor cells. Our study provides evidence for an lncRNA that regulates protein ubiquitination and degradation and thereby plays a critical role in the survival and tumorigenicity of tumor cells. Our results suggest that UPAT and UHRF1 may be promising molecular targets for the therapy of colon cancer.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Neoplasias do Colo/genética , RNA Longo não Codificante/fisiologia , Proteínas Estimuladoras de Ligação a CCAAT/química , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteólise , Ubiquitina-Proteína Ligases , Ubiquitinação , Regulação para Cima
4.
Regul Toxicol Pharmacol ; 91: 109-116, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29024715

RESUMO

To determine the amounts and chemical forms of chlorine compounds in elemental chlorine-free (ECF) bleached pulp for sanitary products, a chemical-form-based quantitative analysis flow scheme was created. The scheme involves quantitative determination of compounds eluted in elution tests assuming dermal exposure. The results indicated that most of the chlorine compounds in pulp used for sanitary products were insoluble organically bound chlorine and water-soluble chlorides consisting of chloride ions. The total amount of chlorine obtained by analysis of the total chlorine in the pulp products was close to the sum of the amounts of water-soluble chlorides, residual chlorine, chloroacetic acids, and insoluble organically bound chlorine. Therefore, the balance of chlorine measured by the flow scheme was acceptable. Little residual chlorine was detected in the pulp products, suggesting that the chlorine dioxide used for bleaching was almost completely converted into inactive inorganic chlorides and organic chlorine compounds and that these substances do not affect the health risk posed by pulp products. A risk assessment of the detected chloroacetic acid and dichloroacetic acid revealed that there is no concern about the health risk posed by use of these products.


Assuntos
Compostos Clorados/efeitos adversos , Compostos Clorados/química , Cloro/efeitos adversos , Cloro/química , Óxidos/efeitos adversos , Água/química
5.
Nature ; 446(7135): 562-6, 2007 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-17392787

RESUMO

Fat-soluble ligands, including sex steroid hormones and environmental toxins, activate ligand-dependent DNA-sequence-specific transcriptional factors that transduce signals through target-gene-selective transcriptional regulation. However, the mechanisms of cellular perception of fat-soluble ligand signals through other target-selective systems remain unclear. The ubiquitin-proteasome system regulates selective protein degradation, in which the E3 ubiquitin ligases determine target specificity. Here we characterize a fat-soluble ligand-dependent ubiquitin ligase complex in human cell lines, in which dioxin receptor (AhR) is integrated as a component of a novel cullin 4B ubiquitin ligase complex, CUL4B(AhR). Complex assembly and ubiquitin ligase activity of CUL4B(AhR) in vitro and in vivo are dependent on the AhR ligand. In the CUL4B(AhR) complex, ligand-activated AhR acts as a substrate-specific adaptor component that targets sex steroid receptors for degradation. Thus, our findings uncover a function for AhR as an atypical component of the ubiquitin ligase complex and demonstrate a non-genomic signalling pathway in which fat-soluble ligands regulate target-protein-selective degradation through a ubiquitin ligase complex.


Assuntos
Proteínas Culina/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Linhagem Celular , Proteínas Culina/química , Proteínas Culina/genética , Receptor alfa de Estrogênio/metabolismo , Humanos , Ligantes , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Receptores de Hidrocarboneto Arílico/genética , Especificidade por Substrato , Ativação Transcricional
6.
IEEE Trans Vis Comput Graph ; 28(10): 3324-3335, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33729941

RESUMO

Rendering a translucent material involves integrating the product of the transmittance-weighted irradiance and the BSSRDF over the surface of it. In previous methods, this spatial integral was computed by creating a dense distribution of discrete points over the surface or by importance-sampling based on the BSSRDF. Both of these approaches necessitate specifying the number of samples, which affects both the quality and the computation time for rendering. An insufficient number of samples leads to noise and artifacts in the rendered image and an excessive number results in a prohibitively long rendering time. In this article, we propose an error estimation method for translucent materials in a many-light rendering framework. Our adaptive sampling can automatically determine the number of samples so that the estimated relative error of each pixel intensity is less than a user-specified threshold. We also propose an efficient method to generate the sampling points that make large contributions to the pixel intensity taking into account the BSSRDF. This enables us to use a simple uniform sampling, instead of costly importance sampling based on the BSSRDF. The experimental results show that our method can accurately estimate the error. In addition, in comparison with the previous methods, our sampling method achieves better estimation accuracy in equal-time.

7.
Oncogene ; 39(5): 1018-1030, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582837

RESUMO

The epigenetic factor UHRF1 regulates transcription by modulating DNA methylation and histone modification, and plays critical roles in proliferation, development, and tumorigenesis. Here, we show that Wnt/c-Myc signaling upregulates UHRF1, which in turn downregulates TUSC3, a candidate tumor suppressor gene that is frequently deleted or downregulated in several cancers. We also show that UHRF1-mediated downregulation of TUSC3 is required for the proliferation of colon cancer cells. Furthermore, we demonstrate that UHRF1 suppresses TUSC3 expression by interacting with methylated H3K14 and thereby suppressing the acetylation of H3K14 by the histone acetyltransferase KAT7. Our study provides evidence for the significance of UHRF1-KAT7-mediated regulation of histone methylation/acetylation in the proliferation of tumor cells and in a diverse set of biological processes controlled by Wnt/c-Myc signaling.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Metilação , Proteínas Proto-Oncogênicas c-myc/metabolismo , Via de Sinalização Wnt
8.
Arch Biochem Biophys ; 460(2): 166-71, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-16949543

RESUMO

Vitamin D receptor (VDR) mediates a wide variety of vitamin D actions through transcriptional controls of target genes as a ligand-dependent transcription factor. The transactivation by VDR is known to associate with two co-activator complexes, DRIP/TRAP and p160/CBP, through physical interaction with DRIP205 and p160 members (TIF2) components, respectively. However, functional difference between the two co-activator complexes for VDR co-activation remains unclear. In the present study, to address this issue, a series of point mutants in VDR helix 12 were generated to test the functional association. Alanine replacement of VDR valine 418 resulted in loss of DRIP205 interaction, but it was still transcriptionally potent with ability to interact with TIF2. Surprisingly, the V421A mutant was only partially impaired in transactivation without co-activator interaction, implying presence of a putative co-activator/complex. Thus, these findings suggest that ligand-induced transcriptional controls by VDR require a number of known and unknown co-regulator complexes, that may support the tissue-specific function of VDR.


Assuntos
Coativador 2 de Receptor Nuclear/metabolismo , Receptores de Calcitriol/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Fosfatase Ácida/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Corticosterona , Humanos , Isoenzimas/metabolismo , Subunidade 1 do Complexo Mediador , Especificidade de Órgãos , Ligação Proteica , Estrutura Secundária de Proteína/genética , Receptores de Calcitriol/genética , Fosfatase Ácida Resistente a Tartarato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA