Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
medRxiv ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39228740

RESUMO

BACKGROUND: Phosphorylated tau (p-tau) is a specific blood biomarker for Alzheimers disease (AD) pathology. Multiple p-tau biomarkers on several analytical platforms are poised for clinical use. The Alzheimers Association Global Biomarker Standardisation Consortium plasma phospho-tau Round Robin study engaged assay developers in a blinded case-control study on plasma p-tau, aiming to learn which assays provide the largest fold-changes in AD compared to non-AD, have the strongest relationship between plasma and cerebrospinal fluid (CSF), and show the most consistent relationships between methods (commutability) in measuring both patient samples and candidate reference materials (CRM). METHODS: Thirty-three different p-tau biomarker assays, built on eight different analytical platforms, were used to quantify paired plasma and CSF samples from 40 participants. AD biomarker status was categorised as AD pathology (n=25) and non-AD pathology (n=15) by CSF Aß42/Aß40 (US-FDA; CE-IVDR) and p-tau181 (CE-IVDR) methods. The commutability of four CRM, at three concentrations, was assessed across assays. FINDINGS: Plasma p-tau217 consistently demonstrated higher fold-changes between AD and non-AD pathology groups, compared to other p-tau epitopes. Fujirebio LUMIPULSE G, UGOT IPMS, and Lilly MSD p-tau217 assays provided the highest median fold-changes. In CSF, p-tau217 assays also performed best, and exhibited substantially larger fold-changes than their plasma counterparts, despite similar diagnostic performance. P-tau217 showed the strongest correlations between plasma assays (rho=0.81 to 0.97). Plasma p-tau levels were weakly-to-moderately correlated with CSF p-tau, and correlations were non-significant within the AD group alone. The evaluated CRM were not commutable across assays. INTERPRETATION: Plasma p-tau217 measures had larger fold-changes and discriminative accuracies for detecting AD pathology, and better agreement across platforms than other plasma p-tau variants. Plasma and CSF markers of p-tau, measured by immunoassays, are not substantially correlated, questioning the interchangeability of their continuous relationship. Further work is warranted to understand the pathophysiology underlying this dissociation, and to develop suitable reference materials facilitating cross-assay standardisation. FUNDING: Alzheimers Association (#ADSF-24-1284328-C).

2.
bioRxiv ; 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37090549

RESUMO

The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range across the proteome. We report a novel proteomic technology - NUcleic acid Linked Immuno-Sandwich Assay (NULISA™) - that incorporates a dual capture and release mechanism to suppress the assay background and improves the sensitivity of the proximity ligation assay by over 10,000-fold to the attomolar level. It utilizes pairs of antibodies conjugated to DNA oligonucleotides that enable immunocomplex purification and generate reporter DNA containing target- and sample-specific barcodes for a next-generation sequencing-based, highly multiplexed readout. A 200-plex NULISA targeting 124 cytokines and chemokines and 80 other immune response-related proteins demonstrated superior sensitivity for detecting low-abundance proteins and high concordance with other immunoassays. The ultrahigh sensitivity allowed the detection of previously difficult-to-detect, but biologically important, low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA addresses longstanding challenges in proteomic analysis of liquid biopsies and makes broad and in-depth proteomic analysis accessible to the general research community and future diagnostic applications.

3.
Nat Commun ; 14(1): 7238, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945559

RESUMO

The blood proteome holds great promise for precision medicine but poses substantial challenges due to the low abundance of most plasma proteins and the vast dynamic range of the plasma proteome. Here we address these challenges with NUcleic acid Linked Immuno-Sandwich Assay (NULISA™), which improves the sensitivity of traditional proximity ligation assays by ~10,000-fold to attomolar level, by suppressing assay background via a dual capture and release mechanism built into oligonucleotide-conjugated antibodies. Highly multiplexed quantification of both low- and high-abundance proteins spanning a wide dynamic range is achieved by attenuating signals from abundant targets with unconjugated antibodies and next-generation sequencing of barcoded reporter DNA. A 200-plex NULISA containing 124 cytokines and chemokines and other proteins demonstrates superior sensitivity to a proximity extension assay in detecting biologically important low-abundance biomarkers in patients with autoimmune diseases and COVID-19. Fully automated NULISA makes broad and in-depth proteomic analysis easily accessible for research and diagnostic applications.


Assuntos
Proteoma , Proteômica , Humanos , Proteínas Sanguíneas/genética , Anticorpos , Citocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA