Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29343578

RESUMO

Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or "shock" drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection.IMPORTANCE The suggested "shock and kill" therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the "shocking" element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.


Assuntos
Infecções por HIV/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Quinolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , HIV-1/metabolismo , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células Jurkat , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/biossíntese , Provírus/genética , Triazóis/farmacologia , Carga Viral/efeitos dos fármacos , Integração Viral/efeitos dos fármacos
2.
Nucleic Acids Res ; 45(20): 11622-11642, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28977426

RESUMO

Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response.


Assuntos
Neoplasias da Mama/genética , Proliferação de Células/genética , Heterocromatina/metabolismo , Histonas/genética , Interferons/metabolismo , Ativação Transcricional/genética , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina/genética , Feminino , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Células MCF-7 , Interferência de RNA , RNA Interferente Pequeno/genética , Transcrição Gênica
3.
Biochim Biophys Acta ; 1859(3): 510-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26477490

RESUMO

Histone H1 is a structural component of chromatin that may have a role in the regulation of chromatin dynamics. Unlike core histones, the linker histone H1 family is evolutionarily diverse and many organisms have multiple H1 variants or subtypes, distinguishable between germ-line and somatic cells. In mammals, the H1 family includes seven somatic H1 variants with a prevalence that varies between cell types and over the course of differentiation, H1.1 to H1.5 being expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Until recently, it has not been known whether the different variants had specific roles in the regulation of nuclear processes or were differentially distributed across the genome. To address this, an increasing effort has been made to investigate divergent features among H1 variants, regarding their structure, expression patterns, chromatin dynamics, post-translational modifications and genome-wide distribution. Although H1 subtypes seem to have redundant functions, several reports point to the idea that they are also differently involved in specific cellular processes. Initial studies investigating the genomic distribution of H1 variants have started to suggest that despite a wide overlap, different variants may be enriched or preferentially located at different chromatin types, but this may depend on the cell type, the relative abundance of the variants, the differentiation state of the cell, or whether cells are derived from a neoplastic process. Understanding the heterogeneity of the histone H1 family is crucial to elucidate their role in chromatin organization, gene expression regulation and other cellular processes.


Assuntos
Histonas/classificação , Animais , Cromatina/química , Regulação da Expressão Gênica , Histonas/genética , Histonas/fisiologia , Humanos , Sinais de Localização Nuclear
4.
J Biol Chem ; 290(12): 7474-91, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25645921

RESUMO

Unlike core histones, the linker histone H1 family is more evolutionarily diverse, and many organisms have multiple H1 variants or subtypes. In mammals, the H1 family includes seven somatic H1 variants; H1.1 to H1.5 are expressed in a replication-dependent manner, whereas H1.0 and H1X are replication-independent. Using ChIP-sequencing data and cell fractionation, we have compared the genomic distribution of H1.0 and H1X in human breast cancer cells, in which we previously observed differential distribution of H1.2 compared with the other subtypes. We have found H1.0 to be enriched at nucleolus-associated DNA repeats and chromatin domains, whereas H1X is associated with coding regions, RNA polymerase II-enriched regions, and hypomethylated CpG islands. Further, H1X accumulates within constitutive or included exons and retained introns and toward the 3' end of expressed genes. Inducible H1X knockdown does not affect cell proliferation but dysregulates a subset of genes related to cell movement and transport. In H1X-depleted cells, the promoters of up-regulated genes are not occupied specifically by this variant, have a lower than average H1 content, and, unexpectedly, do not form an H1 valley upon induction. We conclude that H1 variants are not distributed evenly across the genome and may participate with some specificity in chromatin domain organization or gene regulation.


Assuntos
Nucléolo Celular/genética , Genoma Humano , Histonas/genética , RNA Polimerase II/metabolismo , Sequência de Bases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ilhas de CpG , DNA/genética , Primers do DNA , Éxons , Humanos , Reação em Cadeia da Polimerase , Sequências Repetitivas de Ácido Nucleico , Transcrição Gênica
5.
Nucleic Acids Res ; 42(7): 4474-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24476918

RESUMO

Seven linker histone H1 variants are present in human somatic cells with distinct prevalence across cell types. Despite being key structural components of chromatin, it is not known whether the different variants have specific roles in the regulation of nuclear processes or are differentially distributed throughout the genome. Using variant-specific antibodies to H1 and hemagglutinin (HA)-tagged recombinant H1 variants expressed in breast cancer cells, we have investigated the distribution of six H1 variants in promoters and genome-wide. H1 is depleted at promoters depending on its transcriptional status and differs between variants. Notably, H1.2 is less abundant than other variants at the transcription start sites of inactive genes, and promoters enriched in H1.2 are different from those enriched in other variants and tend to be repressed. Additionally, H1.2 is enriched at chromosomal domains characterized by low guanine-cytosine (GC) content and is associated with lamina-associated domains. Meanwhile, other variants are associated with higher GC content, CpG islands and gene-rich domains. For instance, H1.0 and H1X are enriched at gene-rich chromosomes, whereas H1.2 is depleted. In short, histone H1 is not uniformly distributed along the genome and there are differences between variants, H1.2 being the one showing the most specific pattern and strongest correlation with low gene expression.


Assuntos
Neoplasias da Mama/genética , Histonas/análise , Neoplasias da Mama/química , Linhagem Celular Tumoral , Ilhas de CpG , Feminino , Regulação Neoplásica da Expressão Gênica , Genômica , Histonas/genética , Humanos , Regiões Promotoras Genéticas , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ativação Transcricional
6.
FEBS J ; 288(6): 1989-2013, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32896099

RESUMO

Giemsa staining of metaphase chromosomes results in a characteristic banding useful for identification of chromosomes and its alterations. We have investigated in silico whether Giemsa bands (G bands) correlate with epigenetic and topological features of the interphase genome. Staining of G-positive bands decreases with GC content; nonetheless, G-negative bands are GC heterogeneous. High GC bands are enriched in active histone marks, RNA polymerase II, and SINEs and associate with gene richness, gene expression, and early replication. Low GC bands are enriched in repressive marks, lamina-associated domains, and LINEs. Histone H1 variants distribute heterogeneously among G bands: H1X is enriched at high GC bands and H1.2 is abundant at low GC, compacted bands. According to epigenetic features and H1 content, G bands can be organized in clusters useful to compartmentalize the genome. Indeed, we have obtained Hi-C chromosome interaction maps and compared topologically associating domains (TADs) and A/B compartments to G banding. TADs with high H1.2/H1X ratio strongly overlap with B compartment, late replicating, and inaccessible chromatin and low GC bands. We propose that GC content is a strong driver of chromatin compaction and 3D genome organization, that Giemsa staining recapitulates this organization denoted by high-throughput techniques, and that H1 variants distribute at distinct chromatin domains. DATABASES: Hi-C data on T47D breast cancer cells have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE147627.


Assuntos
Corantes Azur , Composição de Bases/genética , Montagem e Desmontagem da Cromatina/genética , Cromatina/genética , Histonas/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina/metabolismo , Epigênese Genética , Epigenômica/métodos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos
7.
Epigenetics ; 13(3): 331-341, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29384431

RESUMO

The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled "Epigenetic Mechanisms in Health and Disease" was held in Barcelona, October 26-26, 2017. The 2017 BCEC was the fifth and last edition of a series of annual conferences organized as a joint effort of five leading Barcelona research institutes together with B-Debate. This edition was organized by Albert Jordan from the Molecular Biology Institute of Barcelona (IBMB-CSIC) and Marcus Bushbeck from the Josep Carreras Leukaemia Research Institute (IJC). Jordi Bernués, Marian Martínez-Balbás, and Ferran Azorín were also part of the scientific committee. In 22 talks and 51 posters, researchers presented their latest results in the fields of histone variants, epigenetic regulation, and chromatin 3D organization to an audience of around 250 participants from 16 countries. This year, a broad number of talks focused on the epigenetic causes and possible related treatments of complex diseases such as cancer. Participants at the 2017 BCEC elegantly closed the series, discussing progress made in the field of epigenetics and highlighting its role in human health and disease.


Assuntos
Cromatina/genética , Metilação de DNA/genética , Epigênese Genética , Humanos , Neoplasias/genética
8.
FEBS Lett ; 588(14): 2353-62, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24873882

RESUMO

In mammals, the linker histone H1, involved in DNA packaging into chromatin, is represented by a family of variants. H1 tails undergo post-translational modifications (PTMs) that can be detected by mass spectrometry. We developed antibodies to analyze several of these as yet unexplored PTMs including the combination of H1.4 K26 acetylation or trimethylation and S27 phosphorylation. H1.2-T165 phosphorylation was detected at S and G2/M phases of the cell cycle and was dispensable for chromatin binding and cell proliferation; while the H1.4-K26 residue was essential for proper cell cycle progression. We conclude that histone H1 PTMs are dynamic over the cell cycle and that the recognition of modified lysines may be affected by phosphorylation of adjacent residues.


Assuntos
Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Linhagem Celular Tumoral , Humanos , Metilação , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA