Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 28(5): 055303, 2017 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-28008889

RESUMO

Electron beam induced deposition (EBID) currently provides the only direct writing technique for truly three-dimensional nanostructures with geometrical features below 50 nm. Unfortunately, the depositions from metal-organic precursors suffer from a substantial carbon content. This hinders many applications, especially in plasmonics where the metallic nature of the geometric surfaces is mandatory. To overcome this problem a post-deposition treatment with oxygen plasma at room temperature was investigated for the purification of gold containing EBID structures. Upon plasma treatment, the structures experience a shrinkage in diameter of about 18 nm but entirely keep their initial shape. The proposed purification step results in a core-shell structure with the core consisting of mainly unaffected EBID material and a gold shell of about 20 nm in thickness. These purified structures are plasmonically active in the visible wavelength range as shown by dark field optical microscopy on helical nanostructures. Most notably, electromagnetic modeling of the corresponding scattering spectra verified that the thickness and quality of the resulting gold shell ensures an optical response equal to that of pure gold nanostructures.

2.
Sci Rep ; 7(1): 2170, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526863

RESUMO

We show that the highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) can successfully be applied as a hole selective front contact in silicon heterojunction (SHJ) solar cells. In combination with a superior electron selective heterojunction back contact based on amorphous silicon (a-Si), mono-crystalline n-type silicon (c-Si) solar cells reach power conversion efficiencies up to 14.8% and high open-circuit voltages exceeding 660 mV. Since in the PEDOT:PSS/c-Si/a-Si solar cell the inferior hybrid junction is determining the electrical device performance we are capable of assessing the recombination velocity (v I ) at the PEDOT:PSS/c-Si interface. An estimated v I of ~400 cm/s demonstrates, that while PEDOT:PSS shows an excellent selectivity on n-type c-Si, the passivation quality provided by the formation of a native oxide at the c-Si surface restricts the performance of the hybrid junction. Furthermore, by comparing the measured external quantum efficiency with optical simulations, we quantify the losses due to parasitic absorption of PEDOT:PSS and reflection of the device layer stack. By pointing out ways to better passivate the hybrid interface and to increase the photocurrent we discuss the full potential of PEDOT:PSS as a front contact in SHJ solar cells.

3.
ACS Appl Mater Interfaces ; 8(13): 8841-8, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26964648

RESUMO

We investigated the buried interface between monocrystalline n-type silicon (n-Si) and the highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) ( PEDOT: PSS), which is successfully applied as a hole selective contact in hybrid solar cells. We show that a post-treatment of the polymer films by immersion in a suitable solvent reduces the layer thickness by removal of excess material. We prove that this post-treatment does not affect the functionality of the hybrid solar cells. Through the thin layer we are probing the chemical structure at the n-Si/ PEDOT: PSS interface with synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES). From the HAXPES data we conclude that the Si substrate of a freshly prepared hybrid solar cell is already oxidized immediately after preparation. Moreover, we show that even when storing the sample in inert gas such as, e.g., nitrogen the n-Si/SiOx/ PEDOT: PSS interface continues to further oxidize. Thus, without further surface treatment, an unstable Si suboxide will always be present at the hybrid interface.

4.
Sci Rep ; 5: 13008, 2015 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-26278010

RESUMO

We investigated hybrid inorganic-organic solar cells combining monocrystalline n-type silicon (n-Si) and a highly conductive polymer poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) ( PEDOT: PSS). The build-in potential, photo- and dark saturation current at this hybrid interface are monitored for varying n-Si doping concentrations. We corroborate that a high build-in potential forms at the hybrid junction leading to strong inversion of the n-Si surface. By extracting work function and valence band edge of the polymer from ultraviolet photoelectron spectroscopy, a band diagram of the hybrid n-Si/ PEDOT: PSS heterojunction is presented. The current-voltage characteristics were analyzed using Schottky and abrupt pn-junction models. The magnitude as well as the dependence of dark saturation current on n-Si doping concentration proves that the transport is governed by diffusion of minority charge carriers in the n-Si and not by thermionic emission of majorities over a Schottky barrier. This leads to a comprehensive explanation of the high observed open-circuit voltages of up to 634 mV connected to high conversion efficiency of almost 14%, even for simple planar device structures without antireflection coating or optimized contacts. The presented work clearly shows that PEDOT: PSS forms a hybrid heterojunction with n-Si behaving similar to a conventional pn-junction and not, like commonly assumed, a Schottky junction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA