Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Cell ; 174(5): 1264-1276.e15, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30057116

RESUMO

During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.


Assuntos
Potenciais da Membrana , Neocórtex/embriologia , Neurônios/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Progressão da Doença , Eletroporação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Neocórtex/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Neurogênese , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Fatores de Tempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Nature ; 622(7982): 367-375, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37730998

RESUMO

The ever-growing compendium of genetic variants associated with human pathologies demands new methods to study genotype-phenotype relationships in complex tissues in a high-throughput manner1,2. Here we introduce adeno-associated virus (AAV)-mediated direct in vivo single-cell CRISPR screening, termed AAV-Perturb-seq, a tuneable and broadly applicable method for transcriptional linkage analysis as well as high-throughput and high-resolution phenotyping of genetic perturbations in vivo. We applied AAV-Perturb-seq using gene editing and transcriptional inhibition to systematically dissect the phenotypic landscape underlying 22q11.2 deletion syndrome3,4 genes in the adult mouse brain prefrontal cortex. We identified three 22q11.2-linked genes involved in known and previously undescribed pathways orchestrating neuronal functions in vivo that explain approximately 40% of the transcriptional changes observed in a 22q11.2-deletion mouse model. Our findings suggest that the 22q11.2-deletion syndrome transcriptional phenotype found in mature neurons may in part be due to the broad dysregulation of a class of genes associated with disease susceptibility that are important for dysfunctional RNA processing and synaptic function. Our study establishes a flexible and scalable direct in vivo method to facilitate causal understanding of biological and disease mechanisms with potential applications to identify genetic interventions and therapeutic targets for treating disease.


Assuntos
Sistemas CRISPR-Cas , Dependovirus , Edição de Genes , Estudos de Associação Genética , Análise de Célula Única , Transcrição Gênica , Animais , Humanos , Camundongos , Dependovirus/genética , Estudos de Associação Genética/métodos , Neurônios/metabolismo , Fenótipo , Córtex Pré-Frontal/metabolismo , Transcrição Gênica/genética , Análise de Célula Única/métodos , Sistemas CRISPR-Cas/genética , Síndrome de DiGeorge/tratamento farmacológico , Síndrome de DiGeorge/genética , Modelos Animais de Doenças , Processamento Pós-Transcricional do RNA , Sinapses/patologia , Predisposição Genética para Doença
3.
Nature ; 599(7885): 453-457, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34754107

RESUMO

Interconnectivity between neocortical areas is critical for sensory integration and sensorimotor transformations1-6. These functions are mediated by heterogeneous inter-areal cortical projection neurons (ICPN), which send axon branches across cortical areas as well as to subcortical targets7-9. Although ICPN are anatomically diverse10-14, they are molecularly homogeneous15, and how the diversity of their anatomical and functional features emerge during development remains largely unknown. Here we address this question by linking the connectome and transcriptome in developing single ICPN of the mouse neocortex using a combination of multiplexed analysis of projections by sequencing16,17 (MAPseq, to identify single-neuron axonal projections) and single-cell RNA sequencing (to identify corresponding gene expression). Focusing on neurons of the primary somatosensory cortex (S1), we reveal a protracted unfolding of the molecular and functional differentiation of motor cortex-projecting ([Formula: see text]) ICPN compared with secondary somatosensory cortex-projecting ([Formula: see text]) ICPN. We identify SOX11 as a temporally differentially expressed transcription factor in [Formula: see text] versus [Formula: see text] ICPN. Postnatal manipulation of SOX11 expression in S1 impaired sensorimotor connectivity and disrupted selective exploratory behaviours in mice. Together, our results reveal that within a single cortical area, different subtypes of ICPN have distinct postnatal paces of molecular differentiation, which are subsequently reflected in distinct circuit connectivities and functions. Dynamic differences in the expression levels of a largely generic set of genes, rather than fundamental differences in the identity of developmental genetic programs, may thus account for the emergence of intra-type diversity in cortical neurons.


Assuntos
Diferenciação Celular , Vias Neurais , Neurônios/citologia , Neurônios/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/fisiologia , Animais , Axônios/fisiologia , Conectoma , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Motor/citologia , Córtex Motor/fisiologia , Neocórtex/citologia , Neocórtex/fisiologia , Fatores de Transcrição SOXC/genética , Fatores de Tempo , Transcriptoma
4.
Development ; 150(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37401408

RESUMO

GABAergic interneurons are key regulators of cortical circuit function. Among the dozens of reported transcriptionally distinct subtypes of cortical interneurons, neurogliaform cells (NGCs) are unique: they are recruited by long-range excitatory inputs, are a source of slow cortical inhibition and are able to modulate the activity of large neuronal populations. Despite their functional relevance, the developmental emergence and diversity of NGCs remains unclear. Here, by combining single-cell transcriptomics, genetic fate mapping, and electrophysiological and morphological characterization, we reveal that discrete molecular subtypes of NGCs, with distinctive anatomical and molecular profiles, populate the mouse neocortex. Furthermore, we show that NGC subtypes emerge gradually through development, as incipient discriminant molecular signatures are apparent in preoptic area (POA)-born NGC precursors. By identifying NGC developmentally conserved transcriptional programs, we report that the transcription factor Tox2 constitutes an identity hallmark across NGC subtypes. Using CRISPR-Cas9-mediated genetic loss of function, we show that Tox2 is essential for NGC development: POA-born cells lacking Tox2 fail to differentiate into NGCs. Together, these results reveal that NGCs are born from a spatially restricted pool of Tox2+ POA precursors, after which intra-type diverging molecular programs are gradually acquired post-mitotically and result in functionally and molecularly discrete NGC cortical subtypes.


Assuntos
Neocórtex , Neurônios , Camundongos , Animais , Fatores de Transcrição/genética , Interneurônios/fisiologia , Movimento Celular
5.
Nature ; 580(7805): E18-E19, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32350465

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 573(7774): 370-374, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462778

RESUMO

The diverse subtypes of excitatory neurons that populate the neocortex are born from apical progenitors located in the ventricular zone. During corticogenesis, apical progenitors sequentially generate deep-layer neurons followed by superficial-layer neurons directly or via the generation of intermediate progenitors. Whether neurogenic fate progression necessarily implies fate restriction in single progenitor types is unknown. Here we specifically isolated apical progenitors and intermediate progenitors, and fate-mapped their respective neuronal progeny following heterochronic transplantation into younger embryos. We find that apical progenitors are temporally plastic and can re-enter past molecular, electrophysiological and neurogenic states when exposed to an earlier-stage environment by sensing dynamic changes in extracellular Wnt. By contrast, intermediate progenitors are committed progenitors that lack such retrograde fate plasticity. These findings identify a diversity in the temporal plasticity of neocortical progenitors, revealing that some subtypes of cells can be untethered from their normal temporal progression to re-enter past developmental states.


Assuntos
Plasticidade Celular/fisiologia , Neocórtex/embriologia , Neurogênese/fisiologia , Células-Tronco/citologia , Animais , Células Cultivadas , Embrião de Mamíferos , Camundongos , Neocórtex/citologia , Neurônios/citologia , Fatores de Tempo
7.
Mol Psychiatry ; 27(4): 2080-2094, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35022531

RESUMO

Mutations in the SHANK3 gene have been recognized as a genetic risk factor for Autism Spectrum Disorder (ASD), a neurodevelopmental disease characterized by social deficits and repetitive behaviors. While heterozygous SHANK3 mutations are usually the types of mutations associated with idiopathic autism in patients, heterozygous deletion of Shank3 gene in mice does not commonly induce ASD-related behavioral deficit. Here, we used in-vivo and ex-vivo approaches to demonstrate that region-specific neonatal downregulation of Shank3 in the Nucleus Accumbens promotes D1R-medium spiny neurons (D1R-MSNs) hyperexcitability and upregulates Transient Receptor Potential Vanilloid 4 (Trpv4) to impair social behavior. Interestingly, genetically vulnerable Shank3+/- mice, when challenged with Lipopolysaccharide to induce an acute inflammatory response, showed similar circuit and behavioral alterations that were rescued by acute Trpv4 inhibition. Altogether our data demonstrate shared molecular and circuit mechanisms between ASD-relevant genetic alterations and environmental insults, which ultimately lead to sociability dysfunctions.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Modelos Animais de Doenças , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Comportamento Social , Canais de Cátion TRPV/genética
9.
J Neurosci ; 41(32): 6822-6835, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34193558

RESUMO

The cortical subplate is critical in regulating the entry of thalamocortical sensory afferents into the cortex. These afferents reach the subplate at embryonic day (E)15.5 in the mouse, but "wait" for several days, entering the cortical plate postnatally. We report that when transcription factor LHX2 is lost in E11.5 cortical progenitors, which give rise to subplate neurons, thalamocortical afferents display premature, exuberant ingrowth into the E15.5 cortex. Embryonic mutant subplate neurons are correctly positioned below the cortical plate, but they display an altered transcriptome and immature electrophysiological properties during the waiting period. The sensory thalamus in these cortex-specific Lhx2 mutants displays atrophy and by postnatal day (P) 7, sensory innervation to the cortex is nearly eliminated leading to a loss of the somatosensory barrels. Strikingly, these phenotypes do not manifest if LHX2 is lost in postmitotic subplate neurons, and the transcriptomic dysregulation in the subplate resulting from postmitotic loss of LHX2 is vastly distinct from that seen when LHX2 is lost in progenitors. These results demonstrate a mechanism operating in subplate progenitors that has profound consequences on the growth of thalamocortical axons into the cortex.SIGNIFICANCE STATEMENT Thalamocortical nerves carry sensory information from the periphery to the cortex. When they first grow into the embryonic cortex, they "wait" at the subplate, a structure critical for the guidance and eventual connectivity of thalamic axons with their cortical targets. How the properties of subplate neurons are regulated is unclear. We report that transcription factor LHX2 is required in the progenitor "mother" cells of the cortical primordium when they are producing their "daughter" subplate neurons, in order for the thalamocortical pathway to wait at the subplate. Without LHX2 function in subplate progenitors, thalamocortical axons grow past the subplate, entering the cortical plate prematurely. This is followed by their eventual attrition and, consequently, a profound loss of sensory innervation of the mature cortex.


Assuntos
Encéfalo/embriologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios Aferentes/citologia , Animais , Movimento Celular/fisiologia , Feminino , Proteínas com Homeodomínio LIM/metabolismo , Masculino , Camundongos , Vias Neurais/embriologia , Células-Tronco Neurais/metabolismo , Neurônios Aferentes/metabolismo , Fatores de Transcrição/metabolismo
10.
Nature ; 538(7623): 96-98, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27669022

RESUMO

Modality-specific sensory inputs from individual sense organs are processed in parallel in distinct areas of the neocortex. For each sensory modality, input follows a cortico-thalamo-cortical loop in which a 'first-order' exteroceptive thalamic nucleus sends peripheral input to the primary sensory cortex, which projects back to a 'higher order' thalamic nucleus that targets a secondary sensory cortex. This conserved circuit motif raises the possibility that shared genetic programs exist across sensory modalities. Here we report that, despite their association with distinct sensory modalities, first-order nuclei in mice are genetically homologous across somatosensory, visual, and auditory pathways, as are higher order nuclei. We further reveal peripheral input-dependent control over the transcriptional identity and connectivity of first-order nuclei by showing that input ablation leads to induction of higher-order-type transcriptional programs and rewiring of higher-order-directed descending cortical input to deprived first-order nuclei. These findings uncover an input-dependent genetic logic for the design and plasticity of sensory pathways, in which conserved developmental programs lead to conserved circuit motifs across sensory modalities.


Assuntos
Vias Aferentes/fisiologia , Modelos Genéticos , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Vias Aferentes/citologia , Animais , Vias Auditivas/citologia , Vias Auditivas/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Corpos Geniculados/citologia , Corpos Geniculados/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/citologia , Núcleos Talâmicos/fisiologia , Transcrição Gênica , Vias Visuais/citologia , Vias Visuais/fisiologia
11.
Development ; 145(22)2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30455367

RESUMO

The field of developmental neuroscience is benefitting from recent technological advances that allow access to organogenesis in vitro via organoid preparations. These methods have been applied to better understanding neural identity, and have opened up a window into the early events that occur during development of the human brain. However, current approaches are not without their limitations, and although brain organoids and other in vitro paradigms recapitulate many processes with remarkable fidelity, there are clear differences between brain organoid development in vitro and brain development in vivo These topics were discussed extensively at a recent workshop organized by The Company of Biologists entitled 'Thinking beyond the dish: taking in vitro neural differentiation to the next level'. Here, we summarize the common themes that emerged from the workshop and highlight some of the limitations and the potential of this emerging technology. In particular, we discuss how organoids can help us understand not only healthy and diseased brain, but also explore new arrays of cellular behaviors.


Assuntos
Encéfalo/crescimento & desenvolvimento , Morfogênese , Organoides/metabolismo , Animais , Humanos , Modelos Biológicos , Neurogênese
12.
Nature ; 511(7510): 471-4, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24828045

RESUMO

During development, thalamocortical (TC) input has a critical role in the spatial delineation and patterning of cortical areas, yet the underlying cellular and molecular mechanisms that drive cortical neuron differentiation are poorly understood. In the primary (S1) and secondary (S2) somatosensory cortex, layer 4 (L4) neurons receive mutually exclusive input originating from two thalamic nuclei: the ventrobasalis (VB), which conveys tactile input, and the posterior nucleus (Po), which conveys modulatory and nociceptive input. Recently, we have shown that L4 neuron identity is not fully committed postnatally, implying a capacity for TC input to influence differentiation during cortical circuit assembly. Here we investigate whether the cell-type-specific molecular and functional identity of L4 neurons is instructed by the origin of their TC input. Genetic ablation of the VB at birth resulted in an anatomical and functional rewiring of Po projections onto L4 neurons in S1. This induced acquisition of Po input led to a respecification of postsynaptic L4 neurons, which developed functional molecular features of Po-target neurons while repressing VB-target traits. Respecified L4 neurons were able to respond both to touch and to noxious stimuli, in sharp contrast to the normal segregation of these sensory modalities in distinct cortical circuits. These findings reveal a behaviourally relevant TC-input-type-specific control over the molecular and functional differentiation of postsynaptic L4 neurons and cognate intracortical circuits, which instructs the development of modality-specific neuronal and circuit properties during corticogenesis.


Assuntos
Diferenciação Celular , Vias Neurais/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Densidade Pós-Sináptica/fisiologia , Córtex Somatossensorial/fisiologia , Núcleos Talâmicos/fisiologia , Animais , Axônios/efeitos dos fármacos , Axônios/fisiologia , Capsaicina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Vias Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Noxas/farmacologia , Optogenética , Densidade Pós-Sináptica/efeitos dos fármacos , Córtex Somatossensorial/citologia , Córtex Somatossensorial/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Núcleos Talâmicos/citologia , Núcleos Talâmicos/efeitos dos fármacos , Tato/fisiologia , Vibrissas/efeitos dos fármacos , Vibrissas/fisiologia
13.
Nature ; 555(7697): 452-454, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29565398

Assuntos
Neurônios
14.
Nature ; 555(7697): 452-454, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32034370
15.
Semin Cell Dev Biol ; 35: 156-64, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25080022

RESUMO

Mature neuronal circuits arise from the coordinated interplay of cell-intrinsic differentiation programs, target-derived signals and activity-dependent processes. Typically, cell-intrinsic mechanisms predominate at early stages of differentiation, while input-dependent processes modulate circuit formation at later stages of development. The whisker barrel cortex of rodents is particularly well suited to study this latter phase. During the first few days after birth, thalamocortical axons (TCA) from the somatosensory ventral posteromedial nucleus (VPM) form synapses onto layer 4 (L4) neurons, which aggregate to form barrels, whose spatial organization corresponds to the distribution of the whiskers on the snout. Besides specific genetic programs, which control TCA and L4 neuron specification, the establishment of the barrel pattern also depends on the information resulting from whisker activation. The plasticity of this system during the first few days after birth is critical for barrel formation: damage to the sensory periphery impairs TCA patterning, while lesions after this period have less pronounced effects. Here, we will review the role and position of L4 neurons within cortical columnar circuits and synaptogenesis during barrel formation.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Sinapses/fisiologia , Animais , Axônios/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurogênese/fisiologia , Córtex Somatossensorial/citologia , Córtex Somatossensorial/crescimento & desenvolvimento , Vibrissas/inervação , Vibrissas/fisiologia
16.
Eur J Neurosci ; 39(9): 1455-64, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24580836

RESUMO

Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.


Assuntos
Nociceptividade/fisiologia , Núcleo Espinal do Trigêmeo/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Espinal do Trigêmeo/fisiologia , Vibrissas/inervação
17.
Curr Opin Neurol ; 27(2): 142-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24553463

RESUMO

PURPOSE OF REVIEW: Neocortical and thalamic interactions are necessary for the execution of complex sensory-motor tasks and associated cognitive processes. Investigation of thalamocortical circuit development is therefore critical to understand developmental disorders involving abnormal cortical function. Here, we review recent advances in our understanding of thalamus-dependent cortical patterning and cortical neuron differentiation. RECENT FINDINGS: Although the principles of cortical map patterning are increasingly understood, the extent to which thalamocortical inputs contribute to cortical neuron differentiation is still unclear. The recent development of genetic models allowing cell-type-specific dissection of cortical input pathways has shed light on some of the input-dependent and activity-dependent processes occurring during cortical development, which are discussed here. SUMMARY: These recent studies have revealed interwoven links between thalamic and cortical neurons, in which cell intrinsic differentiation programs are tightly regulated by synaptic input during a prolonged period of development. Challenges in the years to come will be to identify the mechanisms underlying the reciprocal interactions between intrinsic and extrinsic differentiation programs, and their contribution to neurodevelopmental disorders and neuropsychiatric disorders at large.


Assuntos
Neocórtex/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Mapeamento Encefálico , Humanos , Neocórtex/citologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Neurogênese , Tálamo/citologia
18.
Nat Commun ; 15(1): 5489, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942786

RESUMO

Lipid droplets (LDs) are dynamic lipid storage organelles. They are tightly linked to metabolism and can exert protective functions, making them important players in health and disease. Most LD studies in vivo rely on staining methods, providing only a snapshot. We therefore developed a LD-reporter mouse by labelling the endogenous LD coat protein perilipin 2 (PLIN2) with tdTomato, enabling staining-free fluorescent LD visualisation in living and fixed tissues and cells. Here we validate this model under standard and high-fat diet conditions and demonstrate that LDs are highly abundant in various cell types in the healthy brain, including neurons, astrocytes, ependymal cells, neural stem/progenitor cells and microglia. Furthermore, we also show that LDs are abundant during brain development and can be visualized using live imaging of embryonic slices. Taken together, our tdTom-Plin2 mouse serves as a novel tool to study LDs and their dynamics under both physiological and diseased conditions in all tissues expressing Plin2.


Assuntos
Encéfalo , Gotículas Lipídicas , Perilipina-2 , Animais , Perilipina-2/metabolismo , Perilipina-2/genética , Gotículas Lipídicas/metabolismo , Encéfalo/metabolismo , Camundongos , Neurônios/metabolismo , Técnicas de Introdução de Genes , Camundongos Transgênicos , Feminino , Proteínas Luminescentes/metabolismo , Proteínas Luminescentes/genética , Masculino , Astrócitos/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Microglia/metabolismo
19.
Cereb Cortex ; 22(5): 996-1006, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21799210

RESUMO

Neurons in layer IV of the rodent whisker somatosensory cortex are tangentially organized in periodic clusters called barrels, each of which is innervated by thalamocortical axons transmitting sensory information from a single principal whisker, together forming a somatotopic map of the whisker pad. Proper thalamocortical innervation is critical for barrel formation during development, but the molecular mechanisms controlling layer IV neuron clustering are unknown. Here, we investigate the role in this mapping of the nuclear orphan receptor RORß, which is expressed in neurons in layer IV during corticogenesis. We find that RORß protein expression specifically increases in the whisker barrel cortex during barrel formation and that in vivo overexpression of RORß is sufficient to induce periodic barrel-like clustering of cortical neurons. Remarkably, this clustering can be induced as early as E18, prior to innervation by thalamocortical afferents and whisker derived-input. At later developmental stages, these ectopic neuronal clusters are specifically innervated by thalamocortical axons, demonstrated by anterograde labeling from the thalamus and by expression of thalamocortical-specific synaptic markers. Together, these data indicate that RORß expression levels control cytoarchitectural patterning of neocortical neurons during development, a critical process for the topographical mapping of whisker input onto the cortical surface.


Assuntos
Padronização Corporal/fisiologia , Neocórtex/citologia , Neurogênese/fisiologia , Neurônios/citologia , Membro 2 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Córtex Somatossensorial/citologia , Animais , Imunofluorescência , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neocórtex/embriologia , Neocórtex/metabolismo , Neurônios/metabolismo , Córtex Somatossensorial/embriologia , Córtex Somatossensorial/metabolismo , Vibrissas/inervação
20.
Proc Natl Acad Sci U S A ; 107(8): 3576-81, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133588

RESUMO

Transcription factors with gradients of expression in neocortical progenitors give rise to distinct motor and sensory cortical areas by controlling the area-specific differentiation of distinct neuronal subtypes. However, the molecular mechanisms underlying this area-restricted control are still unclear. Here, we show that COUP-TFI controls the timing of birth and specification of corticospinal motor neurons (CSMN) in somatosensory cortex via repression of a CSMN differentiation program. Loss of COUP-TFI function causes an area-specific premature generation of neurons with cardinal features of CSMN, which project to subcerebral structures, including the spinal cord. Concurrently, genuine CSMN differentiate imprecisely and do not project beyond the pons, together resulting in impaired skilled motor function in adult mice with cortical COUP-TFI loss-of-function. Our findings indicate that COUP-TFI exerts critical areal and temporal control over the precise differentiation of CSMN during corticogenesis, thereby enabling the area-specific functional features of motor and sensory areas to arise.


Assuntos
Fator I de Transcrição COUP/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurônios Motores/citologia , Neurogênese/genética , Tratos Piramidais/citologia , Lobo Temporal/crescimento & desenvolvimento , Animais , Fator I de Transcrição COUP/genética , Camundongos , Camundongos Knockout , Neurônios Motores/metabolismo , Tratos Piramidais/metabolismo , Lobo Temporal/metabolismo , Tálamo/crescimento & desenvolvimento , Tálamo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA