RESUMO
Forecasts of future forest change are governed by ecosystem sensitivity to climate change, but ecosystem model projections are under-constrained by data at multidecadal and longer timescales. Here, we quantify ecosystem sensitivity to centennial-scale hydroclimate variability, by comparing dendroclimatic and pollen-inferred reconstructions of drought, forest composition and biomass for the last millennium with five ecosystem model simulations. In both observations and models, spatial patterns in ecosystem responses to hydroclimate variability are strongly governed by ecosystem sensitivity rather than climate exposure. Ecosystem sensitivity was higher in models than observations and highest in simpler models. Model-data comparisons suggest that interactions among biodiversity, demography and ecophysiology processes dampen the sensitivity of forest composition and biomass to climate variability and change. Integrating ecosystem models with observations from timescales extending beyond the instrumental record can better understand and forecast the mechanisms regulating forest sensitivity to climate variability in a complex and changing world.
Assuntos
Ecossistema , Árvores , Mudança Climática , Secas , FlorestasRESUMO
Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and continental or intercontinental dispersal) to constrain community processes. This division has left a "missing middle": Ecological and environmental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the disciplines, and identify topics where the disciplines can engage to mutual benefit.
Assuntos
Biota , Paleontologia , Fósseis , Pólen/fisiologia , Fatores de TempoRESUMO
We synthesize insights from current understanding of drought impacts at stand-to-biogeographic scales, including management options, and we identify challenges to be addressed with new research. Large stand-level shifts underway in western forests already are showing the importance of interactions involving drought, insects, and fire. Diebacks, changes in composition and structure, and shifting range limits are widely observed. In the eastern US, the effects of increasing drought are becoming better understood at the level of individual trees, but this knowledge cannot yet be confidently translated to predictions of changing structure and diversity of forest stands. While eastern forests have not experienced the types of changes seen in western forests in recent decades, they too are vulnerable to drought and could experience significant changes with increased severity, frequency, or duration in drought. Throughout the continental United States, the combination of projected large climate-induced shifts in suitable habitat from modeling studies and limited potential for the rapid migration of tree populations suggests that changing tree and forest biogeography could substantially lag habitat shifts already underway. Forest management practices can partially ameliorate drought impacts through reductions in stand density, selection of drought-tolerant species and genotypes, artificial regeneration, and the development of multistructured stands. However, silvicultural treatments also could exacerbate drought impacts unless implemented with careful attention to site and stand characteristics. Gaps in our understanding should motivate new research on the effects of interactions involving climate and other species at the stand scale and how interactions and multiple responses are represented in models. This assessment indicates that, without a stronger empirical basis for drought impacts at the stand scale, more complex models may provide limited guidance.
Assuntos
Biodiversidade , Secas , Florestas , Ecossistema , Árvores , Estados UnidosRESUMO
"Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were â¼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.
Assuntos
Biodiversidade , Mudança Climática , Fósseis , Modelos Biológicos , Plantas , Simulação por Computador , Demografia , Ecologia/métodos , América do Norte , Pólen/química , Especificidade da Espécie , Fatores de TempoRESUMO
Long-distance dispersal is an integral part of plant species migration and population development. We aged and genotyped 1125 individuals in four disjunct populations of Pinus ponderosa that were initially established by long-distance dispersal in the 16th and 17th centuries. Parentage analysis was used to determine if individuals were the product of local reproductive events (two parents present), long-distance pollen dispersal (one parent present) or long-distance seed dispersal (no parents present). All individuals established in the first century at each site were the result of long-distance dispersal. Individuals reproduced at younger ages with increasing age of the overall population. These results suggest Allee effects, where populations were initially unable to expand on their own, and were dependent on long-distance dispersal to overcome a minimum-size threshold. Our results demonstrate that long-distance dispersal was not only necessary for initial colonisation but also to sustain subsequent population growth during early phases of expansion.
Assuntos
Pinus ponderosa , Pólen , Dispersão de Sementes , Fatores Etários , Genótipo , Pinus ponderosa/genética , Crescimento Demográfico , WyomingRESUMO
The processes underlying the development of new populations are important for understanding how species colonize new territory and form viable long-term populations. Life-history-mediated processes such as Allee effects and dispersal capability may interact with climate variability and site-specific factors to govern population success and failure over extended time frames. We studied four disjunct populations of ponderosa pine in the Bighorn Basin of north-central Wyoming to examine population growth spanning more than five centuries. The study populations are separated from continuous ponderosa pine forest by distances ranging from 15 to >100 km. Strong evidence indicates that the initial colonizing individuals are still present, yielding a nearly complete record of population history. All trees in each population were aged using dendroecological techniques. The populations were all founded between 1530 and 1655 cal yr CE. All show logistic growth patterns, with initial exponential growth followed by a slowing during the mid to late 20th century. Initial population growth was slower than expectations from a logistic regression model at all four populations, but increased during the mid-18th century. Initial lags in population growth may have been due to strong Allee effects. A combination of overcoming Allee effects and a transition to favorable climate conditions may have facilitated a mid-18th century pulse in population growth rate.
Assuntos
Pinus ponderosa/fisiologia , Adaptação Fisiológica , Clima , Ecossistema , Pinus ponderosa/genética , População , Crescimento Demográfico , Fatores de Tempo , WyomingRESUMO
The mid-Holocene decline of Tsuga canadensis (hereafter Tsuga) populations across eastern North America is widely perceived as a synchronous event, driven by pests/pathogens, rapid climate change, or both. Pattern identification and causal attribution are hampered by low stratigraphic density of pollen-sampling and radiometric dates at most sites, and by absence of highly resolved, paired pollen and paleoclimate records from single sediment cores, where chronological order of climatic and vegetational changes can be assessed. We present an intensely sampled (contiguous 1-cm intervals) record of pollen and water table depth (inferred from testate amoebae) from a single core spanning the Tsuga decline at Irwin Smith Bog in Lower Michigan, with high-precision chronology. We also present an intensively sampled pollen record from Tower Lake in Upper Michigan. Both sites show high-magnitude fluctuations in Tsuga pollen percentages during the pre-decline maximum. The terminal decline is dated at both sites ca. 5000 cal yr BP, some 400 years later than estimates from other sites and data compilations. The terminal Tsuga decline was evidently heterochronous across its range. A transient decline ca. 5350 cal yr BP at both sites may correspond to the terminal decline at other sites in eastern North America. At Irwin Smith Bog, the terminal Tsuga decline preceded an abrupt and persistent decline in water table depths by approximately 200 years, suggesting the decline was not directly driven by abrupt climate change. The Tsuga decline may best be viewed as comprising at least three phases: a long-duration pre-decline maximum with high-magnitude and high-frequency fluctuations, followed by a terminal decline at individual sites, followed in turn by two millennia of persistently low Tsuga populations. These phases may not be causally linked, and may represent dynamics taking place at multiple temporal and spatial scales. Further progress toward understanding the phenomenon requires an expanded network of high-resolution pollen and paleoclimate chronologies.
Assuntos
Ecossistema , Tsuga/fisiologia , Mudança Climática , América do Norte , Pólen , Dinâmica Populacional , Fatores de TempoRESUMO
Climate variability, particularly the frequency of extreme events, is likely to increase in the coming decades, with poorly understood consequences for terrestrial ecosystems. Hydroclimatic variations of the Medieval Climate Anomaly (MCA) provide a setting for studying ecological responses to recent climate variability at magnitudes and timescales comparable to expectations of coming centuries. We examined forest response to the MCA in the humid western Great Lakes region of North America, using proxy records of vegetation, fire, and hydroclimate. Multi-decadal moisture variability during the MCA was associated with a widespread, episodic decline in Fagus grandifolia (beech) populations. Spatial patterns of drought and forest changes were coherent, with beech declining only in areas where proxy-climate records indicate that severe MCA droughts occurred. The occurrence of widespread, drought-induced ecological changes in the Great Lakes region indicates that ecosystems in humid regions are vulnerable to rapid changes in drought magnitude and frequency.
Assuntos
Secas , Ecossistema , Árvores/fisiologia , Demografia , Monitoramento Ambiental , Great Lakes Region , Umidade , Desenvolvimento Vegetal , Pólen , Especificidade da Espécie , Fatores de TempoRESUMO
Climate change in the coming centuries will be characterized by interannual, decadal, and multidecadal fluctuations superimposed on anthropogenic trends. Predicting ecological and biogeographic responses to these changes constitutes an immense challenge for ecologists. Perspectives from climatic and ecological history indicate that responses will be laden with contingencies, resulting from episodic climatic events interacting with demographic and colonization events. This effect is compounded by the dependency of environmental sensitivity upon life-stage for many species. Climate variables often used in empirical niche models may become decoupled from the proximal variables that directly influence individuals and populations. Greater predictive capacity, and more-fundamental ecological and biogeographic understanding, will come from integration of correlational niche modeling with mechanistic niche modeling, dynamic ecological modeling, targeted experiments, and systematic observations of past and present patterns and dynamics.
Assuntos
Mudança Climática , Ecossistema , Modelos Biológicos , AnimaisRESUMO
BACKGROUND: Quaternary plant ecology in much of the world has historically relied on morphological identification of macro- and microfossils from sediments of small freshwater lakes. Here, we report new protocols that reliably yield DNA sequence data from Holocene plant macrofossils and bulk lake sediment used to infer ecological change. This will allow changes in census populations, estimated from fossils and associated sediment, to be directly associated with population genetic changes. RESULTS: We successfully sequenced DNA from 64 samples (out of 126) comprised of bulk sediment and seeds, leaf fragments, budscales, and samaras extracted from Holocene lake sediments in the western Great Lakes region of North America. Overall, DNA yields were low. However, we were able to reliably amplify samples with as few as 10 copies of a short cpDNA fragment with little detectable PCR inhibition. Our success rate was highest for sediments < 2000 years old, but we were able to successfully amplify DNA from samples up to 4600 years old. DNA sequences matched the taxonomic identity of the macrofossil from which they were extracted 79% of the time. Exceptions suggest that DNA molecules from surrounding nearby sediments may permeate or adhere to macrofossils in sediments. CONCLUSIONS: An ability to extract ancient DNA from Holocene sediments potentially allows exciting new insights into the genetic consequences of long-term environmental change. The low DNA copy numbers we found in fossil material and the discovery of multiple sequence variants from single macrofossil extractions highlight the need for careful experimental and laboratory protocols. Further application of these protocols should lead to better understanding of the ecological and evolutionary consequences of environmental change.
Assuntos
DNA de Plantas/genética , Fósseis , Sedimentos Geológicos/análise , Plantas/genética , Great Lakes Region , Dados de Sequência Molecular , Filogenia , Plantas/classificaçãoRESUMO
Management of imminent ecosystem shifts demands adaptive, translational approaches.
Assuntos
Mudança Climática , Clima , Florestas , Árvores/fisiologia , Chuva , Temperatura , Estados UnidosRESUMO
Strategies for 21st-century environmental management and conservation under global change require a strong understanding of the biological mechanisms that mediate responses to climate- and human-driven change to successfully mitigate range contractions, extinctions, and the degradation of ecosystem services. Biodiversity responses to past rapid warming events can be followed in situ and over extended periods, using cross-disciplinary approaches that provide cost-effective and scalable information for species' conservation and the maintenance of resilient ecosystems in many bioregions. Beyond the intrinsic knowledge gain such integrative research will increasingly provide the context, tools, and relevant case studies to assist in mitigating climate-driven biodiversity losses in the 21st century and beyond.
Assuntos
Biodiversidade , Mudança Climática/história , Conservação dos Recursos Naturais , Extinção Biológica , Animais , Arquivos , História Antiga , PaleontologiaRESUMO
The first Global Assessment of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) found widespread, accelerating declines in Earth's biodiversity and associated benefits to people from nature. Addressing these trends will require science-based policy responses to reduce impacts, especially at national to local scales. Effective scaling of science-policy efforts, driven by global and national assessments, is a major challenge for turning assessment into action and will require unprecedented commitment by scientists to engage with communities of policy and practice. Fulfillment of science's social contract with society, and with nature, will require strong institutional support for scientists' participation in activities that transcend conventional research and publication.
Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Planeta Terra , PolíticasRESUMO
Understanding and modeling of how forest composition and pattern are recorded by sedimentary pollen assemblages requires data sets in which modern pollen assemblages are paired with forest-composition data across a range of spatial scales. Pollen data from 33 small lakes (<2.0 ha) in the northeastern United States, paired with estimates of forest composition and basal area by species within successive radial distances from the lake margins (0-20, 20-50, 50-100, 100-500, 500-1,000 m), can support further studies of pollen-vegetation relationships and development of calibration models. There are no copyright or proprietary restrictions for research or teaching purposes, other than citation of this source of the data.
RESUMO
Forest ecosystems in eastern North America have been in flux for the last several thousand years, well before Euro-American land clearance and the 20th-century onset of anthropogenic climate change. However, the magnitude and uncertainty of prehistoric vegetation change have been difficult to quantify because of the multiple ecological, dispersal, and sedimentary processes that govern the relationship between forest composition and fossil pollen assemblages. Here we extend STEPPS, a Bayesian hierarchical spatiotemporal pollen-vegetation model, to estimate changes in forest composition in the upper Midwestern United States from about 2,100 to 300 yr ago. Using this approach, we find evidence for large changes in the relative abundance of some species, and significant changes in community composition. However, these changes took place against a regional background of changes that were small in magnitude or not statistically significant, suggesting complexity in the spatiotemporal patterns of forest dynamics. The single largest change is the infilling of Tsuga canadensis in northern Wisconsin over the past 2,000 yr. Despite range infilling, the range limit of T. canadensis was largely stable, with modest expansion westward. The regional ecotone between temperate hardwood forests and northern mixed hardwood/conifer forests shifted southwestward by 15-20 km in Minnesota and northwestern Wisconsin. Fraxinus, Ulmus, and other mesic hardwoods expanded in the Big Woods region of southern Minnesota. The increasing density of paleoecological data networks and advances in statistical modeling approaches now enables the confident detection of subtle but significant changes in forest composition over the last 2,000 yr.
Assuntos
Ecossistema , Florestas , Teorema de Bayes , Mudança Climática , Meio-Oeste dos Estados Unidos , Minnesota , Incerteza , Estados Unidos , WisconsinRESUMO
Increased attention to species movement in response to environmental change highlights the need to consider changes in species distributions and altered biological assemblages. Such changes are well known from paleoecological studies, but have accelerated with ongoing pervasive human influence. In addition to species that move, some species will stay put, leading to an array of novel interactions. Species show a variety of responses that can allow movement or persistence. Conservation and restoration actions have traditionally focused on maintaining or returning species in particular places, but increasingly also include interventions that facilitate movement. Approaches are required that incorporate the fluidity of biotic assemblages into the goals set and interventions deployed.
Assuntos
Distribuição Animal , Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/métodos , Dispersão Vegetal , EcossistemaRESUMO
How individual species and entire ecosystems will respond to future climate change are among the most pressing questions facing ecologists. Past biodiversity dynamics recorded in the paleoecological archives show a broad array of responses, yet significant knowledge gaps remain. In particular, the relative roles of evolutionary adaptation, phenotypic plasticity, and dispersal in promoting survival during times of climate change have yet to be clarified. Investigating the paleo-archives offers great opportunities to understand biodiversity responses to future climate change. In this review we discuss the mechanisms by which biodiversity responds to environmental change, and identify gaps of knowledge on the role of range shifts and tolerance. We also outline approaches at the intersection of paleoecology, genomics, experiments, and predictive models that will elucidate the processes by which species have survived past climatic changes and enhance predictions of future changes in biological diversity.
Assuntos
Biodiversidade , Evolução Biológica , Mudança Climática , Adaptação Fisiológica , Dinâmica PopulacionalRESUMO
Impacts of global climate change on terrestrial ecosystems are imperfectly constrained by ecosystem models and direct observations. Pervasive ecosystem transformations occurred in response to warming and associated climatic changes during the last glacial-to-interglacial transition, which was comparable in magnitude to warming projected for the next century under high-emission scenarios. We reviewed 594 published paleoecological records to examine compositional and structural changes in terrestrial vegetation since the last glacial period and to project the magnitudes of ecosystem transformations under alternative future emission scenarios. Our results indicate that terrestrial ecosystems are highly sensitive to temperature change and suggest that, without major reductions in greenhouse gas emissions to the atmosphere, terrestrial ecosystems worldwide are at risk of major transformation, with accompanying disruption of ecosystem services and impacts on biodiversity.