Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Kidney Int ; 105(6): 1254-1262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458475

RESUMO

Three-dimensional (3D) imaging has advanced basic research and clinical medicine. However, limited resolution and imperfections of real-world 3D image material often preclude algorithmic image analysis. Here, we present a methodologic framework for such imaging and analysis for functional and spatial relations in experimental nephritis. First, optical tissue-clearing protocols were optimized to preserve fluorescence signals for light sheet fluorescence microscopy and compensated attenuation effects using adjustable 3D correction fields. Next, we adapted the fast marching algorithm to conduct backtracking in 3D environments and developed a tool to determine local concentrations of extractable objects. As a proof-of-concept application, we used this framework to determine in a glomerulonephritis model the individual proteinuria and periglomerular immune cell infiltration for all glomeruli of half a mouse kidney. A correlation between these parameters surprisingly did not support the intuitional assumption that the most inflamed glomeruli are the most proteinuric. Instead, the spatial density of adjacent glomeruli positively correlated with the proteinuria of a given glomerulus. Because proteinuric glomeruli appear clustered, this suggests that the exact location of a kidney biopsy may affect the observed severity of glomerular damage. Thus, our algorithmic pipeline described here allows analysis of various parameters of various organs composed of functional subunits, such as the kidney, and can theoretically be adapted to processing other image modalities.


Assuntos
Algoritmos , Modelos Animais de Doenças , Glomerulonefrite , Imageamento Tridimensional , Glomérulos Renais , Proteinúria , Animais , Proteinúria/patologia , Glomérulos Renais/patologia , Imageamento Tridimensional/métodos , Camundongos , Glomerulonefrite/patologia , Microscopia de Fluorescência/métodos , Camundongos Endogâmicos C57BL , Estudo de Prova de Conceito , Masculino
2.
J Am Soc Nephrol ; 32(10): 2445-2453, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34599036

RESUMO

BACKGROUND: Renal denervation (RDN) is an invasive intervention to treat drug-resistant arterial hypertension. Its therapeutic value is contentious. Here we examined the effects of RDN on inflammatory and infectious kidney disease models in mice. METHODS: Mice were unilaterally or bilaterally denervated, or sham operated, then three disease models were induced: nephrotoxic nephritis (NTN, a model for crescentic GN), pyelonephritis, and acute endotoxemic kidney injury (as a model for septic kidney injury). Analytical methods included measurement of renal glomerular filtration, proteinuria, flow cytometry of renal immune cells, immunofluorescence microscopy, and three-dimensional imaging of optically cleared kidney tissue by light-sheet fluorescence microscopy followed by algorithmic analysis. RESULTS: Unilateral RDN increased glomerular filtration in denervated kidneys, but decreased it in the contralateral kidneys. In the NTN model, more nephritogenic antibodies were deposited in glomeruli of denervated kidneys, resulting in stronger inflammation and injury in denervated compared with contralateral nondenervated kidneys. Also, intravenously injected LPS increased neutrophil influx and inflammation in the denervated kidneys, both after unilateral and bilateral RDN. When we induced pyelonephritis in bilaterally denervated mice, both kidneys contained less bacteria and neutrophils. In unilaterally denervated mice, pyelonephritis was attenuated and intrarenal neutrophil numbers were lower in the denervated kidneys. The nondenervated contralateral kidneys harbored more bacteria, even compared with sham-operated mice, and showed the strongest influx of neutrophils. CONCLUSIONS: Our data suggest that the increased perfusion and filtration in denervated kidneys can profoundly influence concomitant inflammatory diseases. Renal deposition of circulating nephritic material is higher, and hence antibody- and endotoxin-induced kidney injury was aggravated in mice. Pyelonephritis was attenuated in denervated murine kidneys, because the higher glomerular filtration facilitated better flushing of bacteria with the urine, at the expense of contralateral, nondenervated kidneys after unilateral denervation.


Assuntos
Injúria Renal Aguda/etiologia , Injúria Renal Aguda/fisiopatologia , Denervação Autônoma/efeitos adversos , Vasoespasmo Coronário/cirurgia , Hipertensão/cirurgia , Nefrite/patologia , Animais , Bactérias/isolamento & purificação , Endotoxemia/complicações , Feminino , Taxa de Filtração Glomerular , Imunoglobulina G/metabolismo , Rim/irrigação sanguínea , Lipopolissacarídeos , Camundongos , Nefrite/imunologia , Nefrite/metabolismo , Neutrófilos/patologia , Proteinúria/etiologia , Pielonefrite/microbiologia , Pielonefrite/patologia , Pielonefrite/fisiopatologia , Artéria Renal/lesões , Artéria Renal/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA