Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 28(2): 665-684, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34543495

RESUMO

Terrestrial ecosystems regulate Earth's climate through water, energy, and biogeochemical transformations. Despite a key role in regulating the Earth system, terrestrial ecology has historically been underrepresented in the Earth system models (ESMs) that are used to understand and project global environmental change. Ecology and Earth system modeling must be integrated for scientists to fully comprehend the role of ecological systems in driving and responding to global change. Ecological insights can improve ESM realism and reduce process uncertainty, while ESMs offer ecologists an opportunity to broadly test ecological theory and increase the impact of their work by scaling concepts through time and space. Despite this mutualism, meaningfully integrating the two remains a persistent challenge, in part because of logistical obstacles in translating processes into mathematical formulas and identifying ways to integrate new theories and code into large, complex model structures. To help overcome this interdisciplinary challenge, we present a framework consisting of a series of interconnected stages for integrating a new ecological process or insight into an ESM. First, we highlight the multiple ways that ecological observations and modeling iteratively strengthen one another, dispelling the illusion that the ecologist's role ends with initial provision of data. Second, we show that many valuable insights, products, and theoretical developments are produced through sustained interdisciplinary collaborations between empiricists and modelers, regardless of eventual inclusion of a process in an ESM. Finally, we provide concrete actions and resources to facilitate learning and collaboration at every stage of data-model integration. This framework will create synergies that will transform our understanding of ecology within the Earth system, ultimately improving our understanding of global environmental change, and broadening the impact of ecological research.


Assuntos
Planeta Terra , Ecossistema , Ecologia , Incerteza , Água
2.
New Phytol ; 222(1): 52-69, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30449035

RESUMO

Contents Summary 52 I. Introduction 52 II. The Community Response to Extreme Drought (CRED) framework 55 III. Post-drought rewetting rates: system and community recovery 61 IV. Site-specific characteristics influencing community resistance and resilience 63 V. Conclusions 64 Acknowledgements 65 References 66 SUMMARY: As climate changes, many regions of the world are projected to experience more intense droughts, which can drive changes in plant community composition through a variety of mechanisms. During drought, community composition can respond directly to resource limitation, but biotic interactions modify the availability of these resources. Here, we develop the Community Response to Extreme Drought framework (CRED), which organizes the temporal progression of mechanisms and plant-plant interactions that may lead to community changes during and after a drought. The CRED framework applies some principles of the stress gradient hypothesis (SGH), which proposes that the balance between competition and facilitation changes with increasing stress. The CRED framework suggests that net biotic interactions (NBI), the relative frequency and intensity of facilitative (+) and competitive (-) interactions between plants, will change temporally, becoming more positive under increasing drought stress and more negative as drought stress decreases. Furthermore, we suggest that rewetting rates affect the rate of resource amelioration, specifically water and nitrogen, altering productivity responses and the intensity and importance of NBI, all of which will influence drought-induced compositional changes. System-specific variables and the intensity of drought influence the strength of these interactions, and ultimately the system's resistance and resilience to drought.


Assuntos
Secas , Ecossistema , Fenômenos Fisiológicos Vegetais , Conceitos Meteorológicos , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA