RESUMO
Interest in adoptive cell therapy for treating cancer is exploding owing to early clinical successes of autologous chimeric antigen receptor (CAR) T lymphocyte therapy. However, limitations using T cells and autologous cell products are apparent as they (1) take weeks to generate, (2) utilize a 1:1 donor-to-patient model, (3) are expensive, and (4) are prone to heterogeneity and manufacturing failures. CAR T cells are also associated with significant toxicities, including cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and prolonged cytopenias. To overcome these issues, natural killer (NK) cells are being explored as an alternative cell source for allogeneic cell therapies. NK cells have an inherent ability to recognize cancers, mediate immune functions of killing and communication, and do not induce graft-versus-host disease, cytokine release syndrome, or immune effector cell-associated neurotoxicity syndrome. NK cells can be obtained from blood or cord blood or be derived from hematopoietic stem and progenitor cells or induced pluripotent stem cells, and can be expanded and cryopreserved for off-the-shelf availability. The first wave of point-of-care NK cell therapies led to the current allogeneic NK cell products being investigated in clinical trials with promising preliminary results. Basic advances in NK cell biology and cellular engineering have led to new translational strategies to block inhibition, enhance and broaden target cell recognition, optimize functional persistence, and provide stealth from patients' immunity. This review details NK cell biology, as well as NK cell product manufacturing, engineering, and combination therapies explored in the clinic leading to the next generation of potent, off-the-shelf cellular therapies for blood cancers.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Síndrome da Liberação de Citocina , Células Matadoras Naturais , Neoplasias/terapiaRESUMO
The use of CD19 chimeric antigen receptor T-cell (CAR-T) therapy for relapsed/refractory solid organ transplantation (SOT)-related post-transplant lymphoproliferative disorder (PTLD) is not well studied. We conducted a multicentre, retrospective analysis of adults with relapsed/refractory SOT-associated PTLD. Among 22 relapsed/refractory SOT-PTLD patients, the pathology was monomorphic B cell. Prior SOTs included 14 kidney (64%), three liver (14%), two heart (9%), one intestinal (5%), one lung (5%), and one pancreas after kidney transplant (5%). The median time from SOT to PTLD diagnosis was 107 months. Pre-CAR-T bridging therapy was used in 55% of patients, and immunosuppression was stopped completely before CAR-T infusion in 64%. Eighteen (82%) patients experienced cytokine release syndrome: one (5%) each grade (G) 3 and G4. The immune effector cell-associated neurotoxicity syndrome was observed in 16 (73%) patients: six (27%) G3 and two (9%) G4. The overall response rate was 64% (55% complete response). Three patients (14%) experienced allograft rejection after CAR-T. The two-year progression-free survival and overall survival rates were 35% and 58%, respectively. Additionally, the achievement of CR post-CAR-T was strongly associated with survival. Collectively, the safety and efficacy of CD19 CAR-T therapy in relapsed/refractory SOT-related PTLD appeared similar to pivotal CAR-T data, including approximately one-third of patients achieving sustained remission.
Assuntos
Transtornos Linfoproliferativos , Transplante de Órgãos , Receptores de Antígenos Quiméricos , Adulto , Humanos , Estudos Retrospectivos , Imunoterapia Adotiva/efeitos adversos , Transtornos Linfoproliferativos/etiologia , Transtornos Linfoproliferativos/terapia , Antígenos CD19 , Transplante de Órgãos/efeitos adversos , Terapia Baseada em Transplante de Células e TecidosRESUMO
Development of graft-versus-host disease (GvHD) is a rare complication after transfusions or solid organ transplantation. Patients typically present with a skin rash, diarrhea, liver failure, and bone marrow aplasia. A diagnosis of transfusion/transplantation associated-GvHD is made based on the clinical and histologic evidence, yet it is often delayed due to the nonspecific symptoms attributed to the patient's underlying illness. Several therapeutic approaches are being used including both increasing and withdrawing immunosuppression, and the use of cellular therapies. Unfortunately, the success rate of these approaches is low and the mortality of this complication is very high. New approaches are needed. We report on three cases of GvHD developing after solid organ transplantation treated with ruxolitinib.
Assuntos
Doença Enxerto-Hospedeiro/tratamento farmacológico , Transplante de Órgãos/efeitos adversos , Pirazóis/uso terapêutico , Idoso , Doença Enxerto-Hospedeiro/etiologia , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Nitrilas , Complicações Pós-Operatórias , PirimidinasRESUMO
ABSTRACT: During the manufacturing period of autologous chimeric antigen receptor (CAR) T-cell therapy, patients may experience a decline in their condition due to cancer progression. In this study, we investigated the impact of bridging therapy (BT) on the outcome of patients with relapsed/refractory large B-cell lymphoma who received antilymphoma treatment between leukapheresis and axicabtagene ciloleucel (axi-cel) infusion. We conducted our analysis using data from the multicenter US Lymphoma CAR-T Consortium, with a median follow-up of 33 months (range, 4.3-42.1). Out of the 298 patients who underwent leukapheresis, 275 patients received axi-cel. A total 52% of patients (n = 143) who received BT had a higher baseline risk profile than patients who did not receive BT, and these patients, as a group, had inferior outcomes compared with those who did not receive BT. However, after propensity score matching between the 2 groups, there were no statistically significant differences in overall response rate (77% vs 87%; P = .13), complete response rate (58% vs 70%; P = .1), progression-free survival (hazard ratio [HR], 1.25; P = .23), and overall survival (HR, 1.39; P=.09) between the BT group and the no-BT group, respectively. Analyzing the effects of BT in the whole cohort that underwent leukapheresis regardless of receiving axi-cel (intention-to-treat analysis) showed similar results. Radiation BT resulted in outcomes similar to those observed with nonradiation BT. Our findings suggest that BT may be safe without a significant impact on long-term survival for patients who require disease stabilization during the manufacturing period. Moreover, our results suggest that there is no clear advantage to using radiation-based BT over nonradiation-based BT.
Assuntos
Produtos Biológicos , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Linfoma Difuso de Grandes Células B/terapia , Produtos Biológicos/uso terapêutico , Imunoterapia Adotiva/efeitos adversosRESUMO
Metastatic (m) colorectal cancer (CRC) is an incurable disease with a poor prognosis and thus remains an unmet clinical need. Immune checkpoint blockade (ICB)-based immunotherapy is effective for mismatch repair-deficient (dMMR)/microsatellite instability-high (MSI-H) mCRC patients, but it does not benefit the majority of mCRC patients. NK cells are innate lymphoid cells with potent effector responses against a variety of tumor cells but are frequently dysfunctional in cancer patients. Memory-like (ML) NK cells differentiated after IL-12/IL-15/IL-18 activation overcome many challenges to effective NK cell anti-tumor responses, exhibiting enhanced recognition, function, and in vivo persistence. We hypothesized that ML differentiation enhances the NK cell responses to CRC. Compared to conventional (c) NK cells, ML NK cells displayed increased IFN-γ production against both CRC cell lines and primary patient-derived CRC spheroids. ML NK cells also exhibited improved killing of CRC target cells in vitro in short-term and sustained cytotoxicity assays, as well as in vivo in NSG mice. Mechanistically, enhanced ML NK cell responses were dependent on the activating receptor NKG2D as its blockade significantly decreased ML NK cell functions. Compared to cNK cells, ML NK cells exhibited greater antibody-dependent cytotoxicity when targeted against CRC by cetuximab. ML NK cells from healthy donors and mCRC patients exhibited increased anti-CRC responses. Collectively, our findings demonstrate that ML NK cells exhibit enhanced responses against CRC targets, warranting further investigation in clinical trials for mCRC patients, including those who have failed ICB.
Assuntos
Diferenciação Celular , Neoplasias Colorretais , Memória Imunológica , Células Matadoras Naturais , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Animais , Camundongos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Interferon gama/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Camundongos Endogâmicos NOD , FemininoRESUMO
The surface receptor CD8α is present on 20%-80% of human (but not mouse) NK cells, yet its function on NK cells remains poorly understood. CD8α expression on donor NK cells was associated with a lack of therapeutic responses in patients with leukemia in prior studies, thus, we hypothesized that CD8α may affect critical NK cell functions. Here, we discovered that CD8α- NK cells had improved control of leukemia in xenograft models compared with CD8α+ NK cells, likely due to an enhanced capacity for proliferation. Unexpectedly, we found that CD8α expression was induced on approximately 30% of previously CD8α- NK cells following IL-15 stimulation. These induced CD8α+ (iCD8α+) NK cells had the greatest proliferation, responses to IL-15 signaling, and metabolic activity compared with those that sustained existing CD8α expression (sustained CD8α+) or those that remained CD8α- (persistent CD8α-). These iCD8α+ cells originated from an IL-15Rßhi NK cell population, with CD8α expression dependent on the transcription factor RUNX3. Moreover, CD8A CRISPR/Cas9 deletion resulted in enhanced responses through the activating receptor NKp30, possibly by modulating KIR inhibitory function. Thus, CD8α status identified human NK cell capacity for IL-15-induced proliferation and metabolism in a time-dependent fashion, and its presence had a suppressive effect on NK cell-activating receptors.
Assuntos
Antígenos CD8 , Proliferação de Células , Interleucina-15 , Células Matadoras Naturais , Ativação Linfocitária , Humanos , Antígenos CD8/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/genética , Interleucina-15/imunologia , Interleucina-15/metabolismo , Interleucina-15/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismoRESUMO
PURPOSE: Axicabtagene ciloleucel (axi-cel) is an autologous CD19 chimeric antigen receptor (CAR) T-cell therapy that is approved for the treatment of relapsed or refractory large B-cell lymphoma. Little is known about the long-term survivorship after CAR T-cell therapy. METHODS: We previously reported the results of 298 patients who were leukapheresed with the intent to receive standard-of-care axi-cel (n = 275 infused) after two or more previous lines of therapy at a median follow-up of 12.9 months. Here, we report extended follow-up of this cohort to a median of 58 months, with a focus on late survivorship events. RESULTS: Among axi-cel-infused patients, progression-free survival at 5 years was 29% and overall survival (OS) at 5 years was 40%. The 5-year lymphoma-specific survival was 53% with infrequent late relapses. However, the 5-year nonrelapse mortality (NRM) was 16.2%, with over half of NRM events occurring beyond 2 years. Patients who were 60 years and older had a lower risk of relapse (P = .02), but a higher risk of NRM compared with patients younger than 60 years (NRM odds ratio, 4.5 [95% CI, 2.1 to 10.8]; P < .001). Late NRM was mainly due to infections and subsequent malignant neoplasms (SMNs). In total, SMNs occurred in 24 patients (9%), including therapy-related myeloid neoplasms (n = 15), solid tumors (n = 7), and unrelated lymphoid malignancies (n = 2). CONCLUSION: In the standard-of-care setting, axi-cel exhibits outcomes consistent with those reported in clinical trials, with sustained, durable responses observed at the 5-year time point. However, late infections and the development of SMN are key survivorship issues that reduce long-term survival after CAR T-cell therapy, particularly in the elderly.
Assuntos
Antígenos CD19 , Produtos Biológicos , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Produtos Biológicos/uso terapêutico , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/mortalidade , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Idoso , Antígenos CD19/imunologia , Antígenos CD19/uso terapêutico , Adulto , Seguimentos , Estados Unidos , Adulto Jovem , Idoso de 80 Anos ou mais , Padrão de Cuidado , Receptores de Antígenos Quiméricos/uso terapêutico , Receptores de Antígenos Quiméricos/imunologiaRESUMO
PURPOSE: Brexucabtagene autoleucel (brexu-cel) is an autologous CD19-directed chimeric antigen receptor (CAR) T-cell therapy approved for relapsed/refractory mantle cell lymphoma (MCL). This therapy was approved on the basis of the single-arm phase II ZUMA-2 trial, which showed best overall and complete response rates of 91% and 68%, respectively. We report clinical outcomes with brexu-cel in the standard-of-care setting for the approved indication. PATIENTS AND METHODS: Patients who underwent leukapheresis between August 1, 2020 and December 31, 2021, at 16 US institutions, with an intent to manufacture commercial brexu-cel for relapsed/refractory MCL, were included. Patient data were collected for analyses of responses, outcomes, and toxicities as per standard guidelines. RESULTS: Of 189 patients who underwent leukapheresis, 168 (89%) received brexu-cel infusion. Of leukapheresed patients, 79% would not have met ZUMA-2 eligibility criteria. Best overall and complete response rates were 90% and 82%, respectively. At a median follow-up of 14.3 months after infusion, the estimates for 6- and 12-month progression-free survival (PFS) were 69% (95% CI, 61 to 75) and 59% (95% CI, 51 to 66), respectively. The nonrelapse mortality was 9.1% at 1 year, primarily because of infections. Grade 3 or higher cytokine release syndrome and neurotoxicity occurred in 8% and 32%, respectively. In univariable analysis, high-risk simplified MCL international prognostic index, high Ki-67, TP53 aberration, complex karyotype, and blastoid/pleomorphic variant were associated with shorter PFS after brexu-cel infusion. Patients with recent bendamustine exposure (within 24 months before leukapheresis) had shorter PFS and overall survival after leukapheresis in intention-to-treat univariable analysis. CONCLUSION: In the standard-of-care setting, the efficacy and toxicity of brexu-cel were consistent with those reported in the ZUMA-2 trial. Tumor-intrinsic features of MCL, and possibly recent bendamustine exposure, may be associated with inferior efficacy outcomes.
Assuntos
Linfoma Difuso de Grandes Células B , Linfoma de Célula do Manto , Receptores de Antígenos Quiméricos , Adulto , Humanos , Receptores de Antígenos Quiméricos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Cloridrato de Bendamustina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Imunoterapia Adotiva/efeitos adversos , Linfoma Difuso de Grandes Células B/patologia , Antígenos CD19/uso terapêuticoRESUMO
Since the T-box transcription factors (TFs) T-BET and EOMES are necessary for initiation of NK cell development, their ongoing requirement for mature NK cell homeostasis, function, and molecular programming remains unclear. To address this, T-BET and EOMES were deleted in unexpanded primary human NK cells using CRISPR/Cas9. Deleting these TFs compromised in vivo antitumor response of human NK cells. Mechanistically, T-BET and EOMES were required for normal NK cell proliferation and persistence in vivo. NK cells lacking T-BET and EOMES also exhibited defective responses to cytokine stimulation. Single-cell RNA-Seq revealed a specific T-box transcriptional program in human NK cells, which was rapidly lost following T-BET and EOMES deletion. Further, T-BET- and EOMES-deleted CD56bright NK cells acquired an innate lymphoid cell precursor-like (ILCP-like) profile with increased expression of the ILC-3-associated TFs RORC and AHR, revealing a role for T-box TFs in maintaining mature NK cell phenotypes and an unexpected role of suppressing alternative ILC lineages. Our study reveals the critical importance of sustained EOMES and T-BET expression to orchestrate mature NK cell function and identity.
Assuntos
Imunidade Inata , Proteínas com Domínio T , Humanos , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Células Matadoras Naturais/metabolismo , Fatores de Transcrição/metabolismo , Citocinas/metabolismoRESUMO
PURPOSE: Head and neck squamous cell carcinoma (HNSCC) is an aggressive tumor with low response rates to frontline PD-1 blockade. Natural killer (NK) cells are a promising cellular therapy for T cell therapy-refractory cancers, but are frequently dysfunctional in patients with HNSCC. Strategies are needed to enhance NK cell responses against HNSCC. We hypothesized that memory-like (ML) NK cell differentiation, tumor targeting with cetuximab, and engineering with an anti-EphA2 (Erythropoietin-producing hepatocellular receptor A2) chimeric antigen receptor (CAR) enhance NK cell responses against HNSCC. EXPERIMENTAL DESIGN: We generated ML NK and conventional (c)NK cells from healthy donors, then evaluated their ability to produce IFNγ, TNF, degranulate, and kill HNSCC cell lines and primary HNSCC cells, alone or in combination with cetuximab, in vitro and in vivo using xenograft models. ML and cNK cells were engineered to express anti-EphA2 CAR-CD8A-41BB-CD3z, and functional responses were assessed in vitro against HNSCC cell lines and primary HNSCC tumor cells. RESULTS: Human ML NK cells displayed enhanced IFNγ and TNF production and both short- and long-term killing of HNSCC cell lines and primary targets, compared with cNK cells. These enhanced responses were further improved by cetuximab. Compared with controls, ML NK cells expressing anti-EphA2 CAR had increased IFNγ and cytotoxicity in response to EphA2+ cell lines and primary HNSCC targets. CONCLUSIONS: These preclinical findings demonstrate that ML differentiation alone or coupled with either cetuximab-directed targeting or EphA2 CAR engineering were effective against HNSCCs and provide the rationale for investigating these combination approaches in early phase clinical trials for patients with HNSCC.
Assuntos
Neoplasias de Cabeça e Pescoço , Receptores de Antígenos Quiméricos , Humanos , Cetuximab/farmacologia , Cetuximab/uso terapêutico , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Linhagem Celular Tumoral , Células Matadoras Naturais , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Anticorpos Monoclonais/metabolismo , Diferenciação CelularRESUMO
Na(+)- and Cl(-)-dependent uptake of neurotransmitters via transporters of the SLC6 family, including the human serotonin transporter (SLC6A4), is critical for efficient synaptic transmission. Although residues in the human serotonin transporter involved in direct Cl(-) coordination of human serotonin transport have been identified, the role of Cl(-) in the transport mechanism remains unclear. Through a combination of mutagenesis, chemical modification, substrate and charge flux measurements, and molecular modeling studies, we reveal an unexpected role for the highly conserved transmembrane segment 1 residue Asn-101 in coupling Cl(-) binding to concentrative neurotransmitter uptake.
Assuntos
Asparagina/química , Cloretos/química , Neurotransmissores/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Animais , Cisteína/química , Eletrofisiologia/métodos , Células HeLa , Humanos , Íons , Mutagênese Sítio-Dirigida , Norepinefrina/metabolismo , Oócitos/metabolismo , Técnicas de Patch-Clamp , Plasmídeos/metabolismo , Ratos , Serotonina/metabolismo , Xenopus laevisRESUMO
BACKGROUND: The majority of patients with large B-cell lymphoma treated with axicabtagene ciloleucel (axi-cel), an anti-CD19 chimeric antigen receptor (CAR) T-cell therapy, develop cytokine release syndrome (CRS). Whether the lack of development of CRS with axi-cel is associated with inferior lymphoma outcomes is unknown. Additionally, relationship between CRS grade and lymphoma outcome is not well established. METHODS: The US Lymphoma CAR T Consortium includes seventeen US academic centers that contribute data independently of manufacturers. We analyzed the modified intent-to-treat population of 275 patients receiving axi-cel in two different ways: 1) Two group analysis comparing no CRS with any grade CRS; 2) Three group analysis comparing grade 0 CRS with grade 1 to 2 CRS, and grade 3-5 CRS. RESULTS: In this large multi-center observational cohort of 275 patients receiving axi-cel, 9% (n = 24) did not develop CRS, 84% (n = 232) developed grade 1-2 CRS, and 7% (n = 19) developed grade 3 to 5 CRS. Patients without CRS, compared with those having any grade CRS, had similar overall response rates (ORR), lower complete response (CR) rates and inferior progression free survival (PFS) with no statistically significant difference in overall survival (OS). Patients experiencing grade 1 to 2 CRS had superior CR rate and PFS, as compared to those without CRS or with grade 3 to 5 CRS. Grade 3 to 5 CRS was associated with a worse OS. CONCLUSION: Overall, durable responses were seen in patients that did not develop CRS, however grade 1 to 2 CRS was associated with better outcomes while those with grade 3 to 5 experienced the worse outcomes.
Assuntos
Linfoma Folicular , Linfoma Difuso de Grandes Células B , Receptores de Antígenos Quiméricos , Antígenos CD19/uso terapêutico , Produtos Biológicos , Síndrome da Liberação de Citocina , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma Folicular/etiologia , Receptores de Antígenos Quiméricos/uso terapêuticoRESUMO
Natural killer (NK) cells are innate lymphoid cells that eliminate cancer cells, produce cytokines, and are being investigated as a nascent cellular immunotherapy. Impaired NK cell function, expansion, and persistence remain key challenges for optimal clinical translation. One promising strategy to overcome these challenges is cytokine-induced memory-like (ML) differentiation, whereby NK cells acquire enhanced antitumor function after stimulation with interleukin-12 (IL-12), IL-15, and IL-18. Here, reduced-intensity conditioning (RIC) for HLA-haploidentical hematopoietic cell transplantation (HCT) was augmented with same-donor ML NK cells on day +7 and 3 weeks of N-803 (IL-15 superagonist) to treat patients with relapsed/refractory acute myeloid leukemia (AML) in a clinical trial (NCT02782546). In 15 patients, donor ML NK cells were well tolerated, and 87% of patients achieved a composite complete response at day +28, which corresponded with clearing high-risk mutations, including TP53 variants. NK cells were the major blood lymphocytes for 2 months after HCT with 1104-fold expansion (over 1 to 2 weeks). Phenotypic and transcriptional analyses identified donor ML NK cells as distinct from conventional NK cells and showed that ML NK cells persisted for over 2 months. ML NK cells expressed CD16, CD57, and high granzyme B and perforin, along with a unique transcription factor profile. ML NK cells differentiated in patients had enhanced ex vivo function compared to conventional NK cells from both patients and healthy donors. Overall, same-donor ML NK cell therapy with 3 weeks of N-803 support safely augmented RIC haplo-HCT for AML.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Imunidade Inata , Interleucina-15 , Células Matadoras Naturais , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/terapiaRESUMO
Crystal structures of LeuT, a bacterial homologue of mammalian neurotransmitter transporters, show a molecule of bound substrate that is essentially exposed to the extracellular space but occluded from the cytoplasm. Thus, there must exist an alternate conformation for LeuT in which the substrate is accessible to the cytoplasm and a corresponding mechanism that switches accessibility from one side of the membrane to the other. Here, we identify the cytoplasmic accessibility pathway of the alternate conformation in a mammalian serotonin transporter (SERT) (a member of the same transporter family as LeuT). We also propose a model for the cytoplasmic-facing state that exploits the internal pseudosymmetry observed in the crystal structure. LeuT contains two structurally similar repeats (TMs1-5 and TMs 6-10) that are inverted with respect to the plane of the membrane. The conformational differences between them result in the formation of the extracellular pathway. Our model for the cytoplasm-facing state exchanges the conformations of the two repeats and thus exposes the substrate and ion-binding sites to the cytoplasm. The conformational change that connects the two states primarily involves the tilting of a 4-helix bundle composed of transmembrane helices 1, 2, 6, and 7. Switching the tilt angle of this bundle is essentially equivalent to switching the conformation of the two repeats. Extensive mutagenesis of SERT and accessibility measurements, using cysteine reagents, are accommodated by our model. These observations may be of relevance to other transporter families, many of which contain internal inverted repeats.
Assuntos
Proteínas de Transporte de Neurotransmissores/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X/métodos , Cisteína/química , Citoplasma/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Modelos Moleculares , Mutação , Neurotransmissores/química , Ratos , Serotonina/metabolismo , Especificidade por SubstratoRESUMO
Targeting T cell malignancies with universal CD7-targeting chimeric antigen receptor T cells (UCART7) can lead to profound immune deficiency due to loss of normal T and NK cells. While a small population of endogenous CD7- T cells exists, these cells are unlikely to be able to repopulate the entire immune repertoire after UCART7 treatment, as they are limited in number and proliferative capacity. To rescue T and NK cells after UCART7, we created hematopoietic stem cells genetically deleted for CD7 (CD7-KO HSCs). CD7-KO HSCs were able to engraft immunodeficient mice and differentiate into T and NK cells lacking CD7 expression. CD7-KO T and NK cells could perform effector functions as robustly as control T and NK cells. Furthermore, CD7-KO T cells were phenotypically and functionally distinct from endogenous CD7- T cells, indicating that CD7-KO T cells can supplement immune functions lacking in CD7- T cells. Mice engrafted with CD7-KO HSCs maintained T and NK cell numbers after UCART7 treatment, while these were significantly decreased in control mice. These studies support the development of CD7-KO HSCs to augment host immunity in patients with T cell malignancies after UCART7 treatment.
Assuntos
Antígenos CD7/genética , Citotoxicidade Imunológica , Transplante de Células-Tronco Hematopoéticas/métodos , Imunoterapia Adotiva/efeitos adversos , Animais , Engenharia Celular/métodos , Edição de Genes , Técnicas de Inativação de Genes , Células-Tronco Hematopoéticas/metabolismo , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia de Células B/imunologia , Leucemia de Células B/terapia , Camundongos , RNA-Seq , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Análise de Célula Única , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/transplante , Quimeras de TransplanteRESUMO
PURPOSE: To evaluate the clinical outcome of patients with non-small-cell lung cancer treated by targeting low variant allelic frequency (VAF) driver mutations identified through cell-free DNA (cfDNA) next-generation sequencing (NGS). Detection of driver mutations in cancer is critically important in the age of targeted therapy, where both tumor-based as well as cfDNA sequencing methods have been used for therapeutic decision making. We hypothesized that VAF should not be predictive of response and that low VAF alterations detected by cfDNA NGS can respond to targeted therapy. PATIENTS AND METHODS: A multicenter retrospective case review was performed to identify patients with non-small-cell lung cancer who received targeted molecular therapy on the basis of findings of low VAF alterations in cfDNA NGS. Mutations at low VAF were defined as < 0.2% mutated cfDNA molecules in a background of wild-type cfDNA. RESULTS: One hundred seventy-two patients underwent cfDNA NGS testing. Of the 172 patients, 12 were identified as having low VAF driver alterations and were considered for targeted therapy. The median progression-free survival (PFS) for all patients was 52 weeks (range, 17 to 88 weeks). For patients with EGFR exon 19 deletion (n = 7), the median PFS was 52 weeks (range, 17 to 60.5 weeks). For patients with EML4-ALK fusions (n = 3), the median PFS was 60 weeks (range, 18 to 88 weeks). The median overall survival for all patients after diagnosis was 57.6 weeks. CONCLUSION: Targeted treatment response for driver mutations detected by cfDNA may be independent of VAF, even in relation to other higher VAF aberrations in plasma, and directly dependent on the underlying disease biology and ability to treat the patient with appropriate targeted therapy.
RESUMO
PURPOSE: Appendiceal neoplasms are heterogeneous and are often treated with chemotherapy similarly to colorectal cancer (CRC). Genomic profiling was performed on 703 appendiceal cancer specimens to compare the mutation profiles of appendiceal subtypes to CRC and other cancers, with the ultimate aim to identify potential biomarkers and novel therapeutic targets. METHODS: Tumor specimens were submitted to a Clinical Laboratory Improvement Amendments-certified laboratory (Foundation Medicine, Cambridge, MA) for hybrid-capture-based sequencing of 3,769 exons from 315 cancer-related genes and 47 introns of 28 genes commonly rearranged in cancer. Interactions between genotype, histologic subtype, treatment, and overall survival (OS) were analyzed in a clinically annotated subset of 76 cases. RESULTS: There were five major histopathologic subtypes: mucinous adenocarcinomas (46%), adenocarcinomas (30%), goblet cell carcinoids (12%), pseudomyxoma peritonei (7.7%), and signet ring cell carcinomas (5.2%). KRAS (35% to 81%) and GNAS (8% to 72%) were the most frequent alterations in epithelial cancers; APC and TP53 mutations were significantly less frequent in appendiceal cancers relative to CRC. Low-grade and high-grade tumors were enriched for GNAS and TP53 mutations, respectively (both χ2 P < .001). GNAS and TP53 were mutually exclusive (Bonferroni corrected P < .001). Tumor grade and TP53 mutation status independently predicted OS. The mutation status of GNAS and TP53 strongly predicted OS (median, 37.1 months for TP53 mutant v 75.8 GNAS-TP53 wild type v 115.5 GNAS mutant; log-rank P = .0031) and performed as well as grade in risk stratifying patients. CONCLUSION: Epithelial appendiceal cancers and goblet cell carcinoids show differences in KRAS and GNAS mutation frequencies and have mutation profiles distinct from CRC. This study highlights the benefit of performing molecular profiling on rare tumors to identify prognostic and predictive biomarkers and new therapeutic targets.
RESUMO
Ibogaine, a hallucinogenic alkaloid with purported anti-addiction properties, inhibited serotonin transporter (SERT) noncompetitively by decreasing V(max) with little change in the K(m) for serotonin (5-HT). Ibogaine also inhibited binding to SERT of the cocaine analog 2beta-2-carbomethoxy-3-(4-[(125)I]iodophenyl)tropane. However, inhibition of binding was competitive, increasing the apparent K(D) without much change in B(max). Ibogaine increased the reactivity of cysteine residues positioned in the proposed cytoplasmic permeation pathway of SERT but not at nearby positions out of that pathway. In contrast, cysteines placed at positions in the extracellular permeation pathway reacted at slower rates in the presence of ibogaine. These results are consistent with the proposal that ibogaine binds to and stabilizes the state of SERT from which 5-HT dissociates to the cytoplasm, in contrast with cocaine, which stabilizes the state that binds extracellular 5-HT.