Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 19(3): e1010623, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36940203

RESUMO

Suicidal ideation (SI) often precedes and predicts suicide attempt and death, is the most common suicidal phenotype and is over-represented in veterans. The genetic architecture of SI in the absence of suicide attempt (SA) is unknown, yet believed to have distinct and overlapping risk with other suicidal behaviors. We performed the first GWAS of SI without SA in the Million Veteran Program (MVP), identifying 99,814 SI cases from electronic health records without a history of SA or suicide death (SD) and 512,567 controls without SI, SA or SD. GWAS was performed separately in the four largest ancestry groups, controlling for sex, age and genetic substructure. Ancestry-specific results were combined via meta-analysis to identify pan-ancestry loci. Four genome-wide significant (GWS) loci were identified in the pan-ancestry meta-analysis with loci on chromosomes 6 and 9 associated with suicide attempt in an independent sample. Pan-ancestry gene-based analysis identified GWS associations with DRD2, DCC, FBXL19, BCL7C, CTF1, ANNK1, and EXD3. Gene-set analysis implicated synaptic and startle response pathways (q's<0.05). European ancestry (EA) analysis identified GWS loci on chromosomes 6 and 9, as well as GWS gene associations in EXD3, DRD2, and DCC. No other ancestry-specific GWS results were identified, underscoring the need to increase representation of diverse individuals. The genetic correlation of SI and SA within MVP was high (rG = 0.87; p = 1.09e-50), as well as with post-traumatic stress disorder (PTSD; rG = 0.78; p = 1.98e-95) and major depressive disorder (MDD; rG = 0.78; p = 8.33e-83). Conditional analysis on PTSD and MDD attenuated most pan-ancestry and EA GWS signals for SI without SA to nominal significance, with the exception of EXD3 which remained GWS. Our novel findings support a polygenic and complex architecture for SI without SA which is largely shared with SA and overlaps with psychiatric conditions frequently comorbid with suicidal behaviors.


Assuntos
Transtorno Depressivo Maior , Veteranos , Humanos , Ideação Suicida , Veteranos/psicologia , Estudo de Associação Genômica Ampla , Transtorno Depressivo Maior/genética , Tentativa de Suicídio/psicologia , Fatores de Risco
2.
Nucleic Acids Res ; 51(19): 10147-10161, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37738140

RESUMO

CRISPR-Cas9 tools have transformed genetic manipulation capabilities in the laboratory. Empirical rules-of-thumb have been developed for only a narrow range of model organisms, and mechanistic underpinnings for sgRNA efficiency remain poorly understood. This work establishes a novel feature set and new public resource, produced with quantum chemical tensors, for interpreting and predicting sgRNA efficiency. Feature engineering for sgRNA efficiency is performed using an explainable-artificial intelligence model: iterative Random Forest (iRF). By encoding quantitative attributes of position-specific sequences for Escherichia coli sgRNAs, we identify important traits for sgRNA design in bacterial species. Additionally, we show that expanding positional encoding to quantum descriptors of base-pair, dimer, trimer, and tetramer sequences captures intricate interactions in local and neighboring nucleotides of the target DNA. These features highlight variation in CRISPR-Cas9 sgRNA dynamics between E. coli and H. sapiens genomes. These novel encodings of sgRNAs enhance our understanding of the elaborate quantum biological processes involved in CRISPR-Cas9 machinery.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Sistemas CRISPR-Cas , Inteligência Artificial , DNA , Escherichia coli/genética , Edição de Genes , Humanos
3.
Plant Physiol ; 191(3): 1934-1952, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36517238

RESUMO

TGA (TGACG-binding) transcription factors, which bind their target DNA through a conserved basic region leucine zipper (bZIP) domain, are vital regulators of gene expression in salicylic acid (SA)-mediated plant immunity. Here, we investigated the role of StTGA2.1, a potato (Solanum tuberosum) TGA lacking the full bZIP, which we named a mini-TGA. Such truncated proteins have been widely assigned as loss-of-function mutants. We, however, confirmed that StTGA2.1 overexpression compensates for SA-deficiency, indicating a distinct mechanism of action compared with model plant species. To understand the underlying mechanisms, we showed that StTGA2.1 can physically interact with StTGA2.2 and StTGA2.3, while its interaction with DNA was not detected. We investigated the changes in transcriptional regulation due to StTGA2.1 overexpression, identifying direct and indirect target genes. Using in planta transactivation assays, we confirmed that StTGA2.1 interacts with StTGA2.3 to activate StPRX07, a member of class III peroxidases (StPRX), which are known to play role in immune response. Finally, via structural modeling and molecular dynamics simulations, we hypothesized that the compact molecular architecture of StTGA2.1 distorts DNA conformation upon heterodimer binding to enable transcriptional activation. This study demonstrates how protein truncation can lead to distinct functions and that such events should be studied carefully in other protein families.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Phytopathology ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776137

RESUMO

Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against over-promising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.

5.
Nucleic Acids Res ; 50(11): 6211-6223, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35061904

RESUMO

In eukaryotes, fine-scale maps of meiotic recombination events have greatly advanced our understanding of the factors that affect genomic variation patterns and evolution of traits. However, in bacteria that lack natural systems for sexual reproduction, unbiased characterization of recombination landscapes has remained challenging due to variable rates of genetic exchange and influence of natural selection. Here, to overcome these limitations and to gain a genome-wide view on recombination, we crossed Bacillus strains with different genetic distances using protoplast fusion. The offspring displayed complex inheritance patterns with one of the parents consistently contributing the major part of the chromosome backbone and multiple unselected fragments originating from the second parent. Our results demonstrate that this bias was in part due to the action of restriction-modification systems, whereas genome features like GC content and local nucleotide identity did not affect distribution of recombination events around the chromosome. Furthermore, we found that recombination occurred uniformly across the genome without concentration into hotspots. Notably, our results show that species-level genetic distance did not affect genome-wide recombination. This study provides a new insight into the dynamics of recombination in bacteria and a platform for studying recombination patterns in diverse bacterial species.


Assuntos
Bacillus , Bacillus/classificação , Bacillus/genética , Mapeamento Cromossômico , Evolução Molecular , Técnicas Genéticas , Recombinação Homóloga , Técnicas Microbiológicas , Protoplastos
6.
Metab Eng ; 76: 193-203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36796578

RESUMO

Deciphering the mechanisms of bacterial fatty acid biosynthesis is crucial for both the engineering of bacterial hosts to produce fatty acid-derived molecules and the development of new antibiotics. However, gaps in our understanding of the initiation of fatty acid biosynthesis remain. Here, we demonstrate that the industrially relevant microbe Pseudomonas putida KT2440 contains three distinct pathways to initiate fatty acid biosynthesis. The first two routes employ conventional ß-ketoacyl-ACP synthase III enzymes, FabH1 and FabH2, that accept short- and medium-chain-length acyl-CoAs, respectively. The third route utilizes a malonyl-ACP decarboxylase enzyme, MadB. A combination of exhaustive in vivo alanine-scanning mutagenesis, in vitro biochemical characterization, X-ray crystallography, and computational modeling elucidate the presumptive mechanism of malonyl-ACP decarboxylation via MadB. Given that functional homologs of MadB are widespread throughout domain Bacteria, this ubiquitous alternative fatty acid initiation pathway provides new opportunities to target a range of biotechnology and biomedical applications.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase , Pseudomonas putida , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Mutagênese , Ácidos Graxos
7.
Mol Psychiatry ; 27(4): 2264-2272, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35347246

RESUMO

To identify pan-ancestry and ancestry-specific loci associated with attempting suicide among veterans, we conducted a genome-wide association study (GWAS) of suicide attempts within a large, multi-ancestry cohort of U.S. veterans enrolled in the Million Veterans Program (MVP). Cases were defined as veterans with a documented history of suicide attempts in the electronic health record (EHR; N = 14,089) and controls were defined as veterans with no documented history of suicidal thoughts or behaviors in the EHR (N = 395,064). GWAS was performed separately in each ancestry group, controlling for sex, age and genetic substructure. Pan-ancestry risk loci were identified through meta-analysis and included two genome-wide significant loci on chromosomes 20 (p = 3.64 × 10-9) and 1 (p = 3.69 × 10-8). A strong pan-ancestry signal at the Dopamine Receptor D2 locus (p = 1.77 × 10-7) was also identified and subsequently replicated in a large, independent international civilian cohort (p = 7.97 × 10-4). Additionally, ancestry-specific genome-wide significant loci were also detected in African-Americans, European-Americans, Asian-Americans, and Hispanic-Americans. Pathway analyses suggested over-representation of many biological pathways with high clinical significance, including oxytocin signaling, glutamatergic synapse, cortisol synthesis and secretion, dopaminergic synapse, and circadian rhythm. These findings confirm that the genetic architecture underlying suicide attempt risk is complex and includes both pan-ancestry and ancestry-specific risk loci. Moreover, pathway analyses suggested many commonly impacted biological pathways that could inform development of improved therapeutics for suicide prevention.


Assuntos
Estudo de Associação Genômica Ampla , Veteranos , Negro ou Afro-Americano/genética , Loci Gênicos , Predisposição Genética para Doença/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Tentativa de Suicídio , População Branca/genética
8.
Am J Epidemiol ; 190(11): 2405-2419, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34165150

RESUMO

Hydroxychloroquine (HCQ) was proposed as an early therapy for coronavirus disease 2019 (COVID-19) after in vitro studies indicated possible benefit. Previous in vivo observational studies have presented conflicting results, though recent randomized clinical trials have reported no benefit from HCQ among patients hospitalized with COVID-19. We examined the effects of HCQ alone and in combination with azithromycin in a hospitalized population of US veterans with COVID-19, using a propensity score-adjusted survival analysis with imputation of missing data. According to electronic health record data from the US Department of Veterans Affairs health care system, 64,055 US Veterans were tested for the virus that causes COVID-19 between March 1, 2020 and April 30, 2020. Of the 7,193 veterans who tested positive, 2,809 were hospitalized, and 657 individuals were prescribed HCQ within the first 48-hours of hospitalization for the treatment of COVID-19. There was no apparent benefit associated with HCQ receipt, alone or in combination with azithromycin, and there was an increased risk of intubation when HCQ was used in combination with azithromycin (hazard ratio = 1.55; 95% confidence interval: 1.07, 2.24). In conclusion, we assessed the effectiveness of HCQ with or without azithromycin in treatment of patients hospitalized with COVID-19, using a national sample of the US veteran population. Using rigorous study design and analytic methods to reduce confounding and bias, we found no evidence of a survival benefit from the administration of HCQ.


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Tratamento Farmacológico da COVID-19 , Hospitalização/estatística & dados numéricos , Hidroxicloroquina/uso terapêutico , Veteranos/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/efeitos adversos , Azitromicina/efeitos adversos , COVID-19/mortalidade , Quimioterapia Combinada , Feminino , Humanos , Hidroxicloroquina/efeitos adversos , Análise de Intenção de Tratamento , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Farmacoepidemiologia , Estudos Retrospectivos , SARS-CoV-2 , Resultado do Tratamento , Estados Unidos/epidemiologia
9.
Metab Eng ; 64: 167-179, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33549838

RESUMO

Pseudomonas putida KT2440 (hereafter KT2440) is a well-studied platform bacterium for the production of industrially valuable chemicals from heterogeneous mixtures of aromatic compounds obtained from lignin depolymerization. KT2440 can grow on lignin-related monomers, such as ferulate (FA), 4-coumarate (4CA), vanillate (VA), 4-hydroxybenzoate (4HBA), and protocatechuate (PCA). Genes associated with their catabolism are known, but knowledge about the uptake systems remains limited. In this work, we studied the KT2440 transporters of lignin-related monomers and their substrate selectivity. Based on the inhibition by protonophores, we focused on five genes encoding aromatic acid/H+ symporter family transporters categorized into major facilitator superfamily that uses the proton motive force. The mutants of PP_1376 (pcaK) and PP_3349 (hcnK) exhibited significantly reduced growth on PCA/4HBA and FA/4CA, respectively, while no change was observed on VA for any of the five gene mutants. At pH 9.0, the conversion of these compounds by hcnK mutant (FA/4CA) and vanK mutant (VA) was dramatically reduced, revealing that these transporters are crucial for the uptake of the anionic substrates at high pH. Uptake assays using 14C-labeled substrates in Escherichia coli and biosensor-based assays confirmed that PcaK, HcnK, and VanK have ability to take up PCA, FA/4CA, and VA/PCA, respectively. Additionally, analyses of the predicted protein structures suggest that the size and hydropathic properties of the substrate-binding sites of these transporters determine their substrate preferences. Overall, this study reveals that at physiological pH, PcaK and HcnK have a major role in the uptake of PCA/4HBA and FA/4CA, respectively, and VanK is a VA/PCA transporter. This information can contribute to the engineering of strains for the efficient conversion of lignin-related monomers to value-added chemicals.


Assuntos
Pseudomonas putida , Simportadores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lignina/metabolismo , Prótons , Pseudomonas putida/genética , Pseudomonas putida/metabolismo
10.
J Neurophysiol ; 124(6): 2012-2021, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33112692

RESUMO

Identifying similarities and differences in the brain metabolome during different states of consciousness has broad relevance for neuroscience and state-dependent autonomic function. This study focused on the prefrontal cortex (PFC) as a brain region known to modulate states of consciousness. Anesthesia was used as a tool to eliminate wakefulness. Untargeted metabolomic analyses were performed on microdialysis samples obtained from mouse PFC during wakefulness and during isoflurane anesthesia. Analyses detected 2,153 molecules, 91 of which could be identified. Analytes were grouped as detected during both wakefulness and anesthesia (n = 61) and as unique to wakefulness (n = 23) or anesthesia (n = 7). Data were analyzed using univariate and multivariate approaches. Relative to wakefulness, during anesthesia there was a significant (q < 0.0001) fourfold change in 21 metabolites. During anesthesia 11 of these 21 molecules decreased and 10 increased. The Kyoto Encyclopedia of Genes and Genomes database was used to relate behavioral state-specific changes in the metabolome to metabolic pathways. Relative to wakefulness, most of the amino acids and analogs measured were significantly decreased during isoflurane anesthesia. Nucleosides and analogs were significantly increased during anesthesia. Molecules associated with carbohydrate metabolism, maintenance of lipid membranes, and normal cell functions were significantly decreased during anesthesia. Significant state-specific changes were also discovered among molecules comprising lipids and fatty acids, monosaccharides, and organic acids. Considered together, these molecules regulate point-to-point transmission, volume conduction, and cellular metabolism. The results identify a novel ensemble of candidate molecules in PFC as putative modulators of wakefulness and the loss of wakefulness.NEW & NOTEWORTHY The loss of wakefulness caused by a single concentration of isoflurane significantly altered levels of interrelated metabolites in the prefrontal cortex. The results support the interpretation that states of consciousness reflect dynamic interactions among cortical neuronal networks involving a humbling number of molecules that comprise the brain metabolome.


Assuntos
Anestesia , Anestésicos Inalatórios/farmacologia , Estado de Consciência/efeitos dos fármacos , Isoflurano/farmacologia , Metaboloma/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Vigília/efeitos dos fármacos , Anestésicos Inalatórios/administração & dosagem , Animais , Cromatografia Líquida , Isoflurano/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Espectrometria de Massas em Tandem
11.
J Neurophysiol ; 123(6): 2285-2296, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32347157

RESUMO

This study quantified eight small-molecule neurotransmitters collected simultaneously from prefrontal cortex of C57BL/6J mice (n = 23) during wakefulness and during isoflurane anesthesia (1.3%). Using isoflurane anesthesia as an independent variable enabled evaluation of the hypothesis that isoflurane anesthesia differentially alters concentrations of multiple neurotransmitters and their interactions. Machine learning was applied to reveal higher order interactions among neurotransmitters. Using a between-subjects design, microdialysis was performed during wakefulness and during anesthesia. Concentrations (nM) of acetylcholine, adenosine, dopamine, GABA, glutamate, histamine, norepinephrine, and serotonin in the dialysis samples are reported (means ± SD). Relative to wakefulness, acetylcholine concentration was lower during isoflurane anesthesia (1.254 ± 1.118 vs. 0.401 ± 0.134, P = 0.009), and concentrations of adenosine (29.456 ± 29.756 vs. 101.321 ± 38.603, P < 0.001), dopamine (0.0578 ± 0.0384 vs. 0.113 ± 0.084, P = 0.036), and norepinephrine (0.126 ± 0.080 vs. 0.219 ± 0.066, P = 0.010) were higher during anesthesia. Isoflurane reconfigured neurotransmitter interactions in prefrontal cortex, and the state of isoflurane anesthesia was reliably predicted by prefrontal cortex concentrations of adenosine, norepinephrine, and acetylcholine. A novel finding to emerge from machine learning analyses is that neurotransmitter concentration profiles in mouse prefrontal cortex undergo functional reconfiguration during isoflurane anesthesia. Adenosine, norepinephrine, and acetylcholine showed high feature importance, supporting the interpretation that interactions among these three transmitters may play a key role in modulating levels of cortical and behavioral arousal.NEW & NOTEWORTHY This study discovered that interactions between neurotransmitters in mouse prefrontal cortex were altered during isoflurane anesthesia relative to wakefulness. Machine learning further demonstrated that, relative to wakefulness, higher order interactions among neurotransmitters were disrupted during isoflurane administration. These findings extend to the neurochemical domain the concept that anesthetic-induced loss of wakefulness results from a disruption of neural network connectivity.


Assuntos
Acetilcolina/metabolismo , Adenosina/metabolismo , Anestesia , Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Aprendizado de Máquina , Rede Nervosa , Norepinefrina/metabolismo , Córtex Pré-Frontal , Inconsciência/metabolismo , Vigília/fisiologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Rede Nervosa/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia
12.
Plant Cell Environ ; 43(4): 1084-1101, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31930733

RESUMO

Necrotrophic fungi constitute the largest group of plant fungal pathogens that cause heavy crop losses worldwide. Phymatotrichopsis omnivora is a broad host, soil-borne necrotrophic fungal pathogen that infects over 2,000 dicotyledonous plants. The molecular basis of such broad host range is unknown. We conducted cell biology and transcriptomic studies in Medicago truncatula (susceptible), Brachypodium distachyon (resistant/nonhost), and Arabidopsis thaliana (partially resistant) to understand P. omnivora virulence mechanisms. We performed defence gene analysis, gene enrichments, and correlational network studies during key infection stages. We identified that P. omnivora infects the susceptible plant as a traditional necrotroph. However, it infects the partially resistant plant as a hemi-biotroph triggering salicylic acid-mediated defence pathways in the plant. Further, the infection strategy in partially resistant plants is determined by the host responses during early infection stages. Mutant analyses in A. thaliana established the role of small peptides PEP1 and PEP2 in defence against P. omnivora. The resistant/nonhost B. distachyon triggered stress responses involving sugars and aromatic acids. Bdwat1 mutant analysis identified the role of cell walls in defence. This is the first report that describes the plasticity in infection strategies of P. omnivora providing insights into broad host range.


Assuntos
Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ascomicetos/metabolismo , Brachypodium/imunologia , Brachypodium/microbiologia , Perfilação da Expressão Gênica , Medicago truncatula/imunologia , Medicago truncatula/microbiologia , Microscopia Eletrônica de Varredura , Doenças das Plantas/imunologia , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Reação em Cadeia da Polimerase , Virulência
13.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29475869

RESUMO

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.


Assuntos
Firmicutes/genética , Firmicutes/metabolismo , Genoma Bacteriano , Lignina/metabolismo , Metagenoma , Celulose/metabolismo , Firmicutes/classificação , Genômica , Metagenômica
14.
PLoS Comput Biol ; 11(3): e1004079, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25815802

RESUMO

We present and develop the theory of 3-way networks, a type of hypergraph in which each edge models relationships between triplets of objects as opposed to pairs of objects as done by standard network models. We explore approaches of how to prune these 3-way networks, illustrate their utility in comparative genomics and demonstrate how they find relationships which would be missed by standard 2-way network models using a phylogenomic dataset of 211 bacterial genomes.


Assuntos
Bactérias , Genômica/métodos , Modelos Genéticos , Bactérias/classificação , Bactérias/genética , Genoma Bacteriano , Filogenia
16.
J Agric Food Chem ; 72(6): 3171-3179, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38291808

RESUMO

Herbicide-resistant weeds are increasingly a problem in crop fields when exposed to similar chemistry over time. To avoid future yield losses, identifying herbicidal chemistry needs to be accelerated. We screened 50,000 small molecules using a liquid-handling robot and light microscopy focusing on pre-emergent herbicides in the family of cellulose biosynthesis inhibitors. Through phenotypic, chemical, genetic, and in silico methods we uncovered 6-{[4-(2-fluorophenyl)-1-piperazinyl]methyl}-N-(2-methoxy-5-methylphenyl)-1,3,5-triazine-2,4-diamine (fluopipamine). Symptomologies support fluopipamine as a putative antagonist of cellulose synthase enzyme 1 (CESA1) from Arabidopsis (Arabidopsis thaliana). Ectopic lignification, inhibition of etiolation, phenotypes including loss of anisotropic cellular expansion, swollen roots, and live cell imaging link fluopipamine to cellulose biosynthesis inhibition. Radiolabeled glucose incorporation of cellulose decreased in short-duration experiments when seedlings were incubated in fluopipamine. To elucidate the mechanism, ethylmethanesulfonate mutagenized M2 seedlings were screened for fluopipamine resistance. Two loci of genetic resistance were linked to CESA1. In silico docking of fluopipamine, quinoxyphen, and flupoxam against various CESA1 mutations suggests that an alternative binding site at the interface between CESA proteins is necessary to preserve cellulose polymerization in compound presence. These data uncovered potential fundamental mechanisms of cellulose biosynthesis in plants along with feasible leads for herbicidal uses.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Herbicidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Celulose/química , Parede Celular/metabolismo , Glucosiltransferases/química , Plântula/metabolismo , Herbicidas/farmacologia , Herbicidas/metabolismo
17.
Nat Med ; 30(4): 1075-1084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38429522

RESUMO

Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or on most days. It adversely affects the quality of life and imposes substantial personal and economic costs. Efforts to treat chronic pain using opioids had a central role in precipitating the opioid crisis. Despite an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well-characterized, in part because studies have largely been limited to samples of European ancestry. To help address this knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in the Million Veteran Program, which identified 126 independent genetic loci, 69 of which are new. Pain intensity was genetically correlated with other pain phenotypes, level of substance use and substance use disorders, other psychiatric traits, education level and cognitive traits. Integration of the genome-wide association studies findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis identified anticonvulsants, ß-blockers and calcium-channel blockers, among other drug groups, as having potential analgesic effects. Our results provide insights into key molecular contributors to the experience of pain and highlight attractive drug targets.


Assuntos
Dor Crônica , Veteranos , Adulto , Humanos , Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Estudo de Associação Genômica Ampla/métodos , Medição da Dor , Qualidade de Vida , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética
18.
Nat Commun ; 14(1): 3964, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407594

RESUMO

The intracellular cholesterol transporter NPC1 functions in late endosomes and lysosomes to efflux unesterified cholesterol, and its deficiency causes Niemann-Pick disease Type C, an autosomal recessive lysosomal disorder characterized by progressive neurodegeneration and early death. Here, we use single-nucleus RNA-seq on the forebrain of Npc1-/- mice at P16 to identify cell types and pathways affected early in pathogenesis. Our analysis uncovers significant transcriptional changes in the oligodendrocyte lineage during developmental myelination, accompanied by diminished maturation of myelinating oligodendrocytes. We identify upregulation of genes associated with neurogenesis and synapse formation in Npc1-/- oligodendrocyte lineage cells, reflecting diminished gene silencing by H3K27me3. Npc1-/- oligodendrocyte progenitor cells reproduce impaired maturation in vitro, and this phenotype is rescued by treatment with GSK-J4, a small molecule inhibitor of H3K27 demethylases. Moreover, mobilizing stored cholesterol in Npc1-/- mice by a single administration of 2-hydroxypropyl-ß-cyclodextrin at P7 rescues myelination, epigenetic marks, and oligodendrocyte gene expression. Our findings highlight an important role for NPC1 in oligodendrocyte lineage maturation and epigenetic regulation, and identify potential targets for therapeutic intervention.


Assuntos
Doença de Niemann-Pick Tipo C , Animais , Camundongos , Linhagem da Célula , Colesterol/metabolismo , Epigênese Genética , Proteínas de Membrana Transportadoras/metabolismo , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Oligodendroglia/metabolismo
19.
Front Psychiatry ; 14: 1178633, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37599888

RESUMO

Introduction: Despite a recent global decrease in suicide rates, death by suicide has increased in the United States. It is therefore imperative to identify the risk factors associated with suicide attempts to combat this growing epidemic. In this study, we aim to identify potential risk factors of suicide attempt using geospatial features in an Artificial intelligence framework. Methods: We use iterative Random Forest, an explainable artificial intelligence method, to predict suicide attempts using data from the Million Veteran Program. This cohort incorporated 405,540 patients with 391,409 controls and 14,131 attempts. Our predictive model incorporates multiple climatic features at ZIP-code-level geospatial resolution. We additionally consider demographic features from the American Community Survey as well as the number of firearms and alcohol vendors per 10,000 people to assess the contributions of proximal environment, access to means, and restraint decrease to suicide attempts. In total 1,784 features were included in the predictive model. Results: Our results show that geographic areas with higher concentrations of married males living with spouses are predictive of lower rates of suicide attempts, whereas geographic areas where males are more likely to live alone and to rent housing are predictive of higher rates of suicide attempts. We also identified climatic features that were associated with suicide attempt risk by age group. Additionally, we observed that firearms and alcohol vendors were associated with increased risk for suicide attempts irrespective of the age group examined, but that their effects were small in comparison to the top features. Discussion: Taken together, our findings highlight the importance of social determinants and environmental factors in understanding suicide risk among veterans.

20.
PNAS Nexus ; 2(10): pgad322, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37854706

RESUMO

Fungal specialized metabolites are a major source of beneficial compounds that are routinely isolated, characterized, and manufactured as pharmaceuticals, agrochemical agents, and industrial chemicals. The production of these metabolites is encoded by biosynthetic gene clusters that are often silent under standard growth conditions. There are limited resources for characterizing the direct link between abiotic stimuli and metabolite production. Herein, we introduce a network analysis-based, data-driven algorithm comprising two routes to characterize the production of specialized fungal metabolites triggered by different exogenous compounds: the direct route and the auxiliary route. Both routes elucidate the influence of treatments on the production of specialized metabolites from experimental data. The direct route determines known and putative metabolites induced by treatments and provides additional insight over traditional comparison methods. The auxiliary route is specific for discovering unknown analytes, and further identification can be curated through online bioinformatic resources. We validated our algorithm by applying chitooligosaccharides and lipids at two different temperatures to the fungal pathogen Aspergillus fumigatus. After liquid chromatography-mass spectrometry quantification of significantly produced analytes, we used network centrality measures to rank the treatments' ability to elucidate these analytes and confirmed their identity through fragmentation patterns or in silico spiking with commercially available standards. Later, we examined the transcriptional regulation of these metabolites through real-time quantitative polymerase chain reaction. Our data-driven techniques can complement existing metabolomic network analysis by providing an approach to track the influence of any exogenous stimuli on metabolite production. Our experimental-based algorithm can overcome the bottlenecks in elucidating novel fungal compounds used in drug discovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA