Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(7)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38198730

RESUMO

Objective. To demonstrate that complete cone beam CT (CBCT) scans from both MV-energy and kV-energy LINAC sources can reduce metal artifacts in radiotherapy guidance, while maintaining standard-of-care x-ray doses levels.Approach. MV-CBCT and kV-CBCT scans are acquired at half normal dose. The impact of lowered dose on MV-CBCT data quality is mitigated by the use of a 4-layer MV-imager prototype and reduced LINAC energy settings (2.5 MV) to improve photon capture. Additionally, the MV-CBCT is used to determine the 3D position and pose of metal implants, which in turn is used to guide model-based poly-energetic correction and interleaving of the kV-CBCT and MV-CBCT data. Certain edge-preserving regularization steps incorporated into the model-based correction algorithm further reduce MV data noise.Main results. The method was tested in digital phantoms and a real pelvis phantom with large 2.5″ spherical inserts, emulating hip replacements of different materials. The proposed method demonstrated an appealing compromise between the high contrast of kV-CBCT and low artifact content of MV-CBCT. Contrast-to-noise improved 3-fold compared to MV-CBCT with a clinical 1-layer architecture at matched dose (37 mGy) and edge blur levels. Visual delineation of the bladder and prostate improved noteably over kV- or MV-CBCT alone.Significance. The proposed method demonstrates that a full MV-CBCT scan can be combined with kV-CBCT to reduce metal artifacts without resorting to complicated beam collimation strategies to limit the MV-CBCT dose contribution. Additionally, significant improvements in CNR can be achieved as compared to metal artifact reduction through current clinical MV-CBCT practices.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Masculino , Humanos , Algoritmos , Tomografia Computadorizada de Feixe Cônico , Pelve , Imagens de Fantasmas
2.
Med Phys ; 50(10): 5944-5955, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37665764

RESUMO

BACKGROUND: The incorporation of multi-energy capabilities into radiotherapy flat-panel detectors offers advantages including enhanced soft tissue visualization by reduction of signal from overlapping anatomy such as bone in 2D image projections; creation of virtual monoenergetic images for 3D contrast enhancement, metal artefact reduction and direct acquisition of relative electron density. A novel dual-layer on-board imager offering dual energy processing capabilities is being designed. As opposed to other dual-energy implementation techniques which require separate acquisition with two different x-ray spectra, the dual-layer detector design enables simultaneous acquisition of high and low energy images with a single exposure. A computational framework is required to optimize the design parameters and evaluate detector performance for specific clinical applications. PURPOSE: In this study, we report on the development of a Monte Carlo (MC) model of the imager including model validation. METHODS: The stack-up of the dual-layer imager (DLI) was implemented in GEANT4 Application for Tomographic Emission (GATE). The DLI model has an active area of 43×43 cm2 , with top and bottom Cesium Iodide (CsI) scintillators of 600 and 800 µm thickness, respectively. Measurement of spatial resolution and imaging of dedicated multi-material dual-energy (DE) phantoms were used to validate the model. The modulation transfer function (MTF) of the detector was calculated for a 120 kVp x-ray spectrum using a 0.5 mm thick tantalum edge rotated by 2.5o . For imaging validation, the DE phantom was imaged using a 140 kVp x-ray spectrum. For both validation simulations, corresponding measurements were done using an initial prototype of the imager. Agreement between simulations and measurement was assessed using normalized root mean square error (NRMSE) and 1D profile difference for the MTF and phantom images respectively. Further comparison between measurement and simulation was made using virtual monoenergetic images (VMIs) generated from basis material images derived using precomputed look-up tables. RESULTS: The MTF of the bottom layer of the dual-layer model shows values decreasing more quickly with spatial frequency, compared to the top layer, due to the thicker bottom scintillator thickness and scatter from the top layer. A comparison with measurement shows NRMSE of 0.013 and 0.015 as well as identical MTF50 of 0.8 mm1 and 1.0 mm1 for the top and bottom layer respectively. For the DE imaging of the DE-phantom, although a maximum deviation of 3.3% is observed for the 10 mm aluminum and Teflon inserts at the top layer, the agreement for all other inserts is less than 2.2% of the measured value at both layers. Material decomposition of simulated scatter-free DE images gives an average accuracy in PMMA and aluminum composition of 4.9% and 10.3% for 11-30 mm PMMA and 1-10 mm aluminum objects respectively. A comparison of decomposed values using scatter containing measured and simulated DE images shows good agreement within statistical uncertainty. CONCLUSION: Validation using both MTF and phantom imaging shows good agreement between simulation and measurements. With the present configuration of the digital prototype, the model can generate material decomposed images and virtual monoenergetic images.


Assuntos
Alumínio , Polimetil Metacrilato , Radiografia , Raios X , Simulação por Computador , Imagens de Fantasmas
3.
Phys Med Biol ; 66(8)2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33503603

RESUMO

Multi-layer imaging (MLI) devices improve the detective quantum efficiency (DQE) while maintaining the spatial resolution of conventional mega-voltage (MV) x-ray detectors for applications in radiotherapy. To date, only MLIs with identical detector layers have been explored. However, it may be possible to instead use different scintillation materials in each layer to improve the final image quality. To this end, we developed and validated a method for optimally combining the individual images from each layer of MLI devices that are built with heterogeneous layers. Two configurations were modeled within the GATE Monte Carlo package by stacking different layers of a terbium doped gadolinium oxysulfide Gd2O2S:Tb (GOS) phosphor and a LKH-5 glass scintillator. Detector response was characterized in terms of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and DQE. Spatial frequency-dependent weighting factors were then analytically derived for each layer such that the total DQE of the summed combination image would be maximized across all spatial modes. The final image is obtained as the weighted sum of the sub-images from each layer. Optimal weighting factors that maximize the DQE were found to be the quotient of MTF and NNPS of each layer in the heterogeneous MLI detector. Results validated the improvement of the DQE across the entire frequency domain. For the LKH-5 slab configuration, DQE(0) increases between 2%-3% (absolute), while the corresponding improvement for the LKH-5 pixelated configuration was 7%. The performance of the weighting method was quantitatively evaluated with respect to spatial resolution, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated planar images of phantoms at 2.5 and 6 MV. The line pair phantom acquisition exhibited a twofold increase in CNR and SNR, however MTF was degraded at spatial frequencies greater than 0.2 lp mm-1. For the Las Vegas phantom, the weighting improved the CNR by around 30% depending on the contrast region while the SNR values are higher by a factor of 2.5. These results indicate that the imaging performance of MLI systems can be enhanced using the proposed frequency-dependent weighting scheme. The CNR and SNR of the weighted combined image are improved across all spatial scales independent of the detector combination or photon beam energy.


Assuntos
Diagnóstico por Imagem , Método de Monte Carlo , Imagens de Fantasmas , Razão Sinal-Ruído
4.
Phys Med Biol ; 66(13)2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33472189

RESUMO

Simultaneous acquisition of cone beam CT (CBCT) projections using both the kV and MV imagers of an image guided radiotherapy system reduces set-up scan times-a benefit to lung cancer radiation oncology patients-but increases noise in the 3D reconstruction. In this article, we present a kV-MV scan time reduction technique that uses two noise-reducing measures to achieve superior performance. The first is a high-DQE multi-layer MV imager prototype. The second is a beam hardening correction algorithm which combines poly-energetic modeling with edge-preserving, regularized smoothing of the projections. Performance was tested in real acquisitions of the Catphan 604 and a thorax phantom. Percent noise was quantified from voxel values in a soft tissue volume of interest (VOI) while edge blur was quantified from a VOI straddling a boundary between air and soft material. Comparisons in noise/resolution performance trade-off were made between our proposed approach, a dose-equivalent kV-only scan, and a kV-MV reconstruction technique previously published by Yinet al(2005Med. Phys.329). The proposed technique demonstrated lower noise as a function of spatial resolution than the baseline kV-MV method, notably a 50% noise reduction at typical edge blur levels. Our proposed method also exhibited fainter non-uniformity artifacts and in some cases superior contrast. Overall, we find that the combination of a multi-layer MV imager, acquiring at a LINAC source energy of 2.5 MV, and a denoised beam hardening correction algorithm enables noise, resolution, and dose performance comparable to standard kV-imager only set-up CBCT, but with nearly half the gantry rotation time.


Assuntos
Radioterapia Guiada por Imagem , Tomografia Computadorizada de Feixe Cônico Espiral , Tomografia Computadorizada de Feixe Cônico , Humanos , Aceleradores de Partículas , Imagens de Fantasmas
5.
J Med Imaging (Bellingham) ; 7(1): 015501, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32016135

RESUMO

We assessed interventional radiologists' task-based image quality preferences for two- and three-dimensional images obtained with a complementary metal-oxide semiconductor (CMOS) flat-panel detector versus a hydrogenated amorphous silicon (a-Si:H) flat-panel detector. CMOS and a-Si:H detectors were implemented on identical mobile C-arms to acquire radiographic, fluoroscopic, and cone-beam computed tomography (CBCT) images of cadavers undergoing simulated interventional procedures using low- and high-dose settings. Images from both systems were displayed side by side on calibrated, diagnostic-quality displays, and three interventional radiologists evaluated task performance relevant to each image and ranked their preferences based on visibility of pertinent anatomy and interventional devices. Overall, CMOS images were preferred in fluoroscopy ( p = 0.002 ) and CBCT ( p = 0.004 ), at low-dose settings ( p = 0.001 ), and for tasks associated with high levels of spatial resolution [e.g., fine anatomical details ( p = 0.006 ) and assessment of interventional devices ( p = 0.015 )]. No significant difference was found for fluoroscopic imaging tasks emphasizing temporal resolution ( p = 0.072 ), for radiography tasks ( p = 0.825 ), when using high-dose settings ( p = 0.360 ), or tasks involving general anatomy ( p = 0.174 ). The image quality preferences are consistent with reported technical advantages of CMOS regarding finer pixel size and reduced electronic noise.

6.
Med Phys ; 45(12): 5420-5436, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30339271

RESUMO

PURPOSE: Indirect-detection CMOS flat-panel detectors (FPDs) offer fine pixel pitch, fast readout, and low electronic noise in comparison to current a-Si:H FPDs. This work investigates the extent to which these potential advantages affect imaging performance in mobile C-arm fluoroscopy and cone-beam CT (CBCT). METHODS: FPDs based on CMOS (Xineos 3030HS, 0.151 mm pixel pitch) or a-Si:H (PaxScan 3030X, 0.194 mm pixel pitch) sensors were outfitted on equivalent mobile C-arms for fluoroscopy and CBCT. Technical assessment of 2D and 3D imaging performance included measurement of electronic noise, gain, lag, modulation transfer function (MTF), noise-power spectrum (NPS), detective quantum efficiency (DQE), and noise-equivalent quanta (NEQ) in fluoroscopy (with entrance air kerma ranging 5-800 nGy per frame) and cone-beam CT (with weighted CT dose index, CTDIw , ranging 0.08-1 mGy). Image quality was evaluated by clinicians in vascular, orthopaedic, and neurological surgery in realistic interventional scenarios with cadaver subjects emulating a variety of 2D and 3D imaging tasks. RESULTS: The CMOS FPD exhibited ~2-3× lower electronic noise and ~7× lower image lag than the a-Si:H FPD. The 2D (projection) DQE was superior for CMOS at ≤50 nGy per frame, especially at high spatial frequencies (~2% improvement at 0.5 mm-1 and ≥50% improvement at 2.3 mm-1 ) and was somewhat inferior at moderate-high doses (up to 18% lower DQE for CMOS at 0.5 mm-1 ). For smooth CBCT reconstructions (low-frequency imaging tasks), CMOS exhibited ~10%-20% higher NEQ (at 0.1-0.5 mm-1 ) at the lowest dose levels (CTDIw ≤0.1 mGy), while the a-Si:H system yielded slightly (~5%) improved NEQ (at 0.1-0.5 lp/mm) at higher dose levels (CTDIw ≥0.6 mGy). For sharp CBCT reconstructions (high-frequency imaging tasks), NEQ was ~32% higher above 1 mm-1 for the CMOS system at mid-high-dose levels and ≥75% higher at the lowest dose levels (CTDIw ≤0.1 mGy). Observer assessment of 2D and 3D cadaver images corroborated the objective metrics with respect to a variety of pertinent interventional imaging tasks. CONCLUSION: Measurements of image noise, spatial resolution, DQE, and NEQ indicate improved low-dose performance for the CMOS-based system, particularly at lower doses and higher spatial frequencies. Assessment in realistic imaging scenarios confirmed improved visibility of fine details in low-dose fluoroscopy and CBCT. The results quantitate the extent to which CMOS detectors improve mobile C-arm imaging performance, especially in 2D and 3D imaging scenarios involving high-resolution tasks and low-dose conditions.


Assuntos
Tomografia Computadorizada de Feixe Cônico/instrumentação , Fluoroscopia/instrumentação , Metais/química , Óxidos/química , Semicondutores , Desenho de Equipamento , Humanos , Imageamento Tridimensional , Razão Sinal-Ruído
7.
Phys Med Biol ; 63(23): 235030, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520416

RESUMO

In radiation therapy, improvements in treatment conformality are often limited by movement of target tissue. To better treat the target, tumor tracking strategies involving beam's-eye-view (BEV) have been explored. However, localization surrogates like implanted fiducial markers may sometimes leave the field-of-view (FOV), as defined by the linear accelerator (LINAC) multi-leaf collimator (MLC). Radiation leakage through the MLC has been measured previously at approximately 1%-2%. High sensitivity prototype detectors imagers may improve the ability to visualize objects outside of the MLC FOV during treatment. The present study presents a proof-of-concept for tracking fiducial markers outside the MLC FOV by employing high sensitivity detectors using a high-efficiency, prototype scintillating glass called LKH-5 and also investigates the impact of multi-layer imager (MLI) architecture. It was found that by improving the detector efficiency, using either of these methods results in a reduction of dose required for fiducial marker visibility. Further, image correction by a rectangular median filter will improve fiducial marker representation in the MLC blocked images. Quantified by measuring the peak-to-sidelobe ratio (PSR) of the normalized cross correlation (NCC) between a template of the fiducial marker with the blocked MLC acquisition, visibility has been found at a threshold of roughly 5 for all configurations with a 3 × 3 cm2 ROI. For typical gadolinium oxysulfide (GOS) detectors in single and simulated 4-layer configurations, the minimum dose required for visualization was 20 and 10 MU, respectively. For LKH-5 detectors in single and simulated 4-layer configurations, this minimum dose was reduced to 4 and 2 MU, respectively. With a 6 MV flattening filter free (FFF) beam dose rate of 1400 MU min-1, the maximum detector frame rate while maintaining fiducial visibility is approximately 12 fps for a 4-layer LKH-5 configuration.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Contagem de Cintilação/instrumentação , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Aceleradores de Partículas , Planejamento da Radioterapia Assistida por Computador/normas , Radioterapia Conformacional/normas , Contagem de Cintilação/normas
8.
IEEE Trans Image Process ; 16(10): 2411-22, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17926925

RESUMO

The majorize-minimize (MM) optimization technique has received considerable attention in signal and image processing applications, as well as in statistics literature. At each iteration of an MM algorithm, one constructs a tangent majorant function that majorizes the given cost function and is equal to it at the current iterate. The next iterate is obtained by minimizing this tangent majorant function, resulting in a sequence of iterates that reduces the cost function monotonically. A well-known special case of MM methods are expectation-maximization algorithms. In this paper, we expand on previous analyses of MM, due to Fessler and Hero, that allowed the tangent majorants to be constructed in iteration-dependent ways. Also, this paper overcomes an error in one of those earlier analyses. There are three main aspects in which our analysis builds upon previous work. First, our treatment relaxes many assumptions related to the structure of the cost function, feasible set, and tangent majorants. For example, the cost function can be nonconvex and the feasible set for the problem can be any convex set. Second, we propose convergence conditions, based on upper curvature bounds, that can be easier to verify than more standard continuity conditions. Furthermore, these conditions allow for considerable design freedom in the iteration-dependent behavior of the algorithm. Finally, we give an original characterization of the local region of convergence of MM algorithms based on connected (e.g., convex) tangent majorants. For such algorithms, cost function minimizers will locally attract the iterates over larger neighborhoods than typically is guaranteed with other methods. This expanded treatment widens the scope of the MM algorithm designs that can be considered for signal and image processing applications, allows us to verify the convergent behavior of previously published algorithms, and gives a fuller understanding overall of how these algorithms behave.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Funções Verossimilhança , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
IEEE Trans Med Imaging ; 36(10): 1997-2009, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28708549

RESUMO

For image-guided procedures, the imaging task is often tied to the registration of intraoperative and preoperative images to a common coordinate system. While the accuracy of this registration is a vital factor in system performance, there is a relatively little work that relates registration accuracy to image quality factors, such as dose, noise, and spatial resolution. To create a theoretical model for such a relationship, we present a Fisher information approach to analyze registration performance in explicit dependence on the underlying image quality factors of image noise, spatial resolution, and signal power spectrum. The model yields analysis of the Cramer-Rao lower bound (CRLB), in registration accuracy as a function of factors governing image quality. Experiments were performed in simulation of computed tomography low-contrast soft tissue images and high-contrast bone (head and neck) images to compare the measured accuracy [root mean squared error (RMSE) of the estimated transformations] with the theoretical lower bound. Analysis of the CRLB reveals that registration performance is closely related to the signal-to-noise ratio of the cross-correlation space. While the lower bound is optimistic, it exhibits consistent trends with experimental findings and yields a method for comparing the performance of various registration methods and similarity metrics. Further analysis validated a method for determining optimal post-processing (image filtering) for registration. Two figures of merit (CRLB and RMSE) are presented that unify models of image quality with registration performance, providing an important guide to optimizing intraoperative imaging with respect to the task of registration.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Cabeça/diagnóstico por imagem , Humanos , Modelos Biológicos , Imagens de Fantasmas , Terapia Assistida por Computador
10.
Phys Med Biol ; 57(4): 867-83, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22290410

RESUMO

We present a new version of STIR (Software for Tomographic Image Reconstruction), an open source object-oriented library implemented in C++ for 3D positron emission tomography reconstruction. This library has been designed such that it can be used for many algorithms and scanner geometries, while being portable to various computing platforms. This second release enhances its flexibility and modular design and includes additional features such as Compton scatter simulation, an additional iterative reconstruction algorithm and parametric image reconstruction (both indirect and direct). We discuss the new features in this release and present example results. STIR can be downloaded from http://stir.sourceforge.net.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Software , Tomografia/métodos , Algoritmos , Animais , Computadores , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA