Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(32): 17665-17677, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530748

RESUMO

The utility of transition metal hydride catalyzed hydrogen atom transfer (MHAT) has been widely demonstrated in organic transformations such as alkene isomerization and hydrofunctionalization reactions. However, the highly reactive nature of the hydride and radical intermediates has hindered mechanistic insight into this pivotal reaction. Recent advances in electrochemical MHAT have opened up the possibility for new analytical approaches for mechanistic diagnosis. Here, we report a voltammetric interrogation of Co-based MHAT reactivity, describing in detail the oxidative formation and reactivity of the key Co-H intermediate and its reaction with aryl alkenes. Insights from cyclic voltammetry and finite element simulations help elucidate the rate-limiting step as metal hydride formation, which we show to be widely tunable based on ligand design. Voltammetry is also suggestive of the formation of Co-alkyl intermediates and a dynamic equilibrium with the reactive neutral radical. These mechanistic studies provide information for the design of future hydrofunctionalization reactions, such as catalyst and silane choice, the relative stability of metal-alkyl species, and how hydrofunctionalization reactions utilize Co-alkyl intermediates. In summary, these studies establish an important template for studying MHAT reactions from the perspective of electrochemical kinetic frameworks.

2.
Angew Chem Int Ed Engl ; 62(46): e202307780, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37428529

RESUMO

Bioelectrocatalytic synthesis is the conversion of electrical energy into value-added products using biocatalysts. These methods merge the specificity and selectivity of biocatalysis and energy-related electrocatalysis to address challenges in the sustainable synthesis of pharmaceuticals, commodity chemicals, fuels, feedstocks and fertilizers. However, the specialized experimental setups and domain knowledge for bioelectrocatalysis pose a significant barrier to adoption. This review introduces key concepts of bioelectrosynthetic systems. We provide a tutorial on the methods of biocatalyst utilization, the setup of bioelectrosynthetic cells, and the analytical methods for assessing bioelectrocatalysts. Key applications of bioelectrosynthesis in ammonia production and small-molecule synthesis are outlined for both enzymatic and microbial systems. This review serves as a necessary introduction and resource for the non-specialist interested in bioelectrosynthetic research.


Assuntos
Eletricidade , Biocatálise
3.
Inorg Chem ; 59(11): 7469-7478, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32396344

RESUMO

Rational engineering of novel nanohybrid materials for sustainable and efficient energy conversion has gained extensive research interest. Cross-linked nanosheets of organic-inorganic nanohybrids (BSeF/Ni(OH)2) were fabricated by one-step reductive electrosynthesis and subsequently applied for electrocatalytic water electrolysis. The organic-inorganic nanohybrids consist of benzo[2,1,3]selenadiazole-5-carbonyl phenylalanine (BSeF) cross-linked with nickel ions (Ni-BSeF) and nickel hydroxides (Ni(OH)2), which provide abundant active sites and feasible charge transfer at the electrocatalytic interface. The resulting electrodeposited nanohybrid BSeF/Ni(OH)2 exhibits bifunctional electrocatalytic performance with 240 and 401 mV of overpotential at +100 and -100 mA cm-2 for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), respectively. The BSeF/Ni(OH)2 offers a longer electrocatalytic activity of 20 h for OER and HER at applied high current densities of +400 and -200 mA cm-2. Coupled with the high OER and HER activity, the two-electrode-based system of BSeF/Ni(OH)2 shows a low cell potential of 1.54 V at 10 mA cm-2. The electrocatalytic performance of Ni-BSeF and Ni(OH)2-based organic-inorganic nanohybrids provides an efficient way to develop a nanohybrid-based catalytic system for energy conversion.

4.
Chemphyschem ; 20(17): 2221-2229, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31243871

RESUMO

We have designed and synthesized the benzoselenadiazole (BDS) based donor-acceptor-donor (D-A-D) π-conjugated compound 4,7-di((E)styryl)benzo[2,1,3]selenadiazole (1). A single-crystal study of 1 shows J-type molecular aggregation in the solid state. The crystal packing of 1 shows head-to-head dimeric intermolecular assembly via Se⋅⋅⋅N interactions while staircase-type interlock molecular packing has occurred via Se⋅⋅⋅π interaction. The staircase-type interlock packing of dimeric molecular arrangement induces sheet-type, herringbone type architecture along crystallographic a axis and ab plane via CH⋅⋅⋅π interactions. Interestingly, the J-type aggregation of 1 in solid state changes to H-type aggregation upon UV-irradiation. Moreover, our spectroscopic findings in solution state reveal H-type of aggregation of 1 in 90 % aqueous THF. We have further demonstrated white light emission in the binary mixture of 1 and 1-pyrenemethanol (2) in 90 % aqueous THF. Our study reveals solvent specific co-assembly of H-aggregated 1 and 2 in 90 % aqueous THF solution, which shows white light emissive properties with the Commission Internationale de l'Eclairage (CIE) chromaticity coordinates (0.32, 0.31). The observed white light emission arises mainly due to the combination of red light from H-aggregated 1, blue light from monomeric 2 and green light from excimers of 2.

5.
Org Biomol Chem ; 16(10): 1728-1735, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29457824

RESUMO

Constrained γ-amino acid gababutin (Gbn) based peptides that form different conformations have been synthesized. Striving to rationalize the impact of side chain orientations framing tetrapeptide-based supramolecular organic frameworks and morphological entities, Gbn incorporated hybrid peptides Boc-Gbn-Aib-Aaa-Aib-OMe (where Aaa = Phe(F) for peptide 1, Leu(L) for peptide 2 and Tyr(Y) for peptide 3) were synthesized by changing the amino acid at the third position. The solution state dual folded conformation (C12/C10 H-bonded) is probed by 2D NMR spectroscopy in support of a DMSO-d6 titration and VT NMR experiments. Peptides 1-3 adopt a C12/C10 type H-bonded dual folded conformation in the crystal state. In addition, distinct supramolecular frameworks result from the modification and orientation of the third residue side chain of peptides 1-3. A solvent induced morphological diversity of peptides 1-3 is attained by modifying the side chain backbone of the tetrapeptides, which are investigated by various microscopic (SEM and AFM) studies. Gbn-based peptides 1-3 show significant morphological and supramolecular packing properties, which are fairly different from those of their gabapentin (Gpn) based analogue peptides.


Assuntos
Oligopeptídeos/química , Ácido gama-Aminobutírico/análogos & derivados , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Molecular , Oligopeptídeos/síntese química , Dobramento de Proteína , Estrutura Secundária de Proteína , Ácido gama-Aminobutírico/síntese química
6.
ACS Mater Au ; 3(5): 557-568, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38089091

RESUMO

Redox flow batteries (RFBs) are of recent interest to store harvested renewable energy for improving grid reliability and utilization. In this study, we synthesized and characterized a series of phenyl acrylate-based UV-cross-linked anion exchange membranes (AEMs) and explored the performance of these AEMs in a model non-aqueous RFB under model conditions. Infrared spectroscopy was utilized to confirm the incorporation of ion carriers in the phenyl acrylate backbone. The electrochemical performance was compared with the commercial Fumasep membrane Fuma-375 based on high stability in non-aqueous solvents, high permeability to the charge-carrying ion, low resistance, low crossover of the redox-active molecules, and low cost. Our results show 55% total capacity retention through 1000 charge/discharge cycles because of low crossover as compared to the Fumasep commercial membrane which retained only 28% capacity. This result is promising in understanding and developing next-generation AEMs for non-aqueous RFBs and other electrochemical systems utilizing organic solvents.

7.
Chem Commun (Camb) ; 58(54): 7534-7537, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35703336

RESUMO

Self-assembled benzoselenadiazole (BSe)-capped tripeptide based nanofibrillar hydrogels have been developed with inherent anticancer and anti-inflammatory activity.


Assuntos
Anti-Inflamatórios , Hidrogéis , Anti-Inflamatórios/farmacologia , Hidrogéis/farmacologia
8.
Nanoscale Adv ; 3(23): 6678-6688, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36132646

RESUMO

Noble metal-based nanomaterials have shown great potential for catalytic application with higher selectivity and activity. Owing to their self-assembly properties with various molecular interactions, peptides play an essential role in the controlled synthesis of noble metal-based catalysts with high surface area. In this work, a phenylalanine (F) and tyrosine (Y) based peptide bolaamphiphile is prepared by solution-phase peptide synthesis. The peptide bolaamphiphile readily self-assembles into a hydrogel with a cross-linked nanofibrillar network. The platinum nanoparticles (Pt NPs) are in situ generated within the cross-linked nanofibrillar network of the hydrogel matrix of the peptide bolaamphiphile. Benefiting from the synergistic properties of the Pt nanoparticles doped on three-dimensional fibrous networks, Pt6@hydrogel shows efficient catalytic activity for the electrochemical hydrogen evolution reaction (HER) in 0.5 M H2SO4 solution. The Pt6@hydrogel requires an overpotential of 45 mV at -10 mA cm-2 with a Tafel slope of 52 mV dec-1. The Pt6@hydrogel also shows electrocatalytic activity in basic and neutral pH solutions. The excellent activity and stability of Pt6@hydrogel for the HER shows great potential for energy conversion applications.

9.
Nanoscale ; 12(46): 23596-23606, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33210694

RESUMO

Organic-inorganic nanohybrids with nanoscale architectures and electrocatalytic properties are emerging as a new branch of advanced functional materials. Herein, nanohybrid organic-inorganic nanosheets are grown on carbon paper via a pulse-electrochemical deposition technique. A benzo[2,1,3]selenadiazole-5-carbonyl protected dipeptide BSeFL (BSe = benzoselenadiazole; F = phenylalanine; and L = leucine) cross-linked with Ni2+ ions (Ni-BSeFL) and nickel hydroxide (Ni(OH)2) in a BSeFL/Ni(OH)2 electrode exhibits stable electrocatalytic activity toward urea oxidation. The cross-linked nanosheet morphology of nanohybrids was optimized by controlling the reduction potential during pulse electrodeposition. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid deposited at -1.0 V provides abundant active sites of Ni3+ with low charge transfer resistance (RCT) and high exchange current density (J0) at the electrocatalytic interface. The nanohybrids with Ni-BSeFL and Ni(OH)2 show low overpotential and superior stability for electrocatalytic urea electro-oxidation. The BSeFL/Ni(OH)2 (-1.0 V) nanohybrid based electrode requires a low potential of 1.30 V (vs. RHE) to acquire a current density of 10 mA cm-2 for the urea oxidation reaction (UOR) in urea containing alkaline solution which is lower than that for water oxidation in alkaline solution (1.49 V vs. RHE). The organic-inorganic nanohybrid BSeFL/Ni(OH)2 (-1.0 V) shows durability over 10 h for oxygen evolution and urea electro-oxidation, thereby confirming the BSeFL/Ni(OH)2 (-1.0 V) nanohybrid-based electrode as an efficient electrocatalyst.

10.
Chempluschem ; 85(5): 910-920, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32401425

RESUMO

In this work, two symmetrical donor-acceptor-donor (D-A-D) type benzoselenadiazole (BSeD)-based π-conjugated molecules were synthesized and employed as an active switching layer for non-volatile data storage applications. BSeD-based derivatives with different donor units attached through common vinylene linkers showed different electrical and optical properties. 4,7-Di((E)-styryl)benzo[c][2,1,3]selenadiazole (DSBSeD) and 4,7-bis((E)-4-methoxystyryl)benzo[c][2,1,3]selenadiazole (DMBSeD) are sandwiched between gallium-doped ZnO (GZO) and metal aluminum electrodes respectively through solution-processed spin-coating method. The solution-processed nanofibrous switching layer containing the DMBSeD-based memory device showed reliable memory characteristics in terms of write and erase operations with low SET voltage than the random-aggregated DSBSeD-based device. The nanofibrous molecular morphology of switching layer overcomes the interfacial hole transport energy barrier at the interface of the DMBSeD thin-film and the bottom GZO electrode. The memory device GZO/DMBSeD/Al based on nanofibrous switching layers shows switching characteristics at compliance current of 10 mA with Vset =0.79 V and Vreset =-0.55 V. This work will be beneficial for the rational design of advanced next-generation organic memory devices by controlling the nanostructured morphology of active organic switching layer for enhanced charge-transfer phenomenon.

11.
Chem Asian J ; 13(2): 204-209, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29266836

RESUMO

An electrochromic system based on a self-assembled dipeptide-appended redox-active quinquethiophene π-gel is reported. The designed peptide-quinquethiophene consists of a symmetric bolaamphiphile that has two segments: a redox-active π-conjugated quinquethiophene core for electrochromism, and peptide motif for the involvement of molecular self-assembly. Investigations reveal that self-assembly and electrochromic properties of the π-gel are strongly dependent on the relative orientation of peptidic and quinquethiophene scaffolds in the self-assembly system. The colors of the π-gel film are very stable with fast and controlled switching speed at room temperature.


Assuntos
Técnicas Eletroquímicas , Peptídeos/química , Tiofenos/química , Géis/química , Estrutura Molecular , Oxirredução , Tiofenos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA