Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1012806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311790

RESUMO

Despite the fact that the new drugs and targeted therapies have been approved for cancer therapy during the past 30 years, the majority of cancer types are still remain challenging to be treated. Due to the tumor heterogeneity, immune system evasion and the complex interaction between the tumor microenvironment and immune cells, the great majority of malignancies need multimodal therapy. Unfortunately, tumors frequently develop treatment resistance, so it is important to have a variety of therapeutic choices available for the treatment of neoplastic diseases. Immunotherapy has lately shown clinical responses in malignancies with unfavorable outcomes. Oncolytic virus (OV) immunotherapy is a cancer treatment strategy that employs naturally occurring or genetically-modified viruses that multiply preferentially within cancer cells. OVs have the ability to not only induce oncolysis but also activate cells of the immune system, which in turn activates innate and adaptive anticancer responses. Despite the fact that OVs were translated into clinical trials, with T-VECs receiving FDA approval for melanoma, their use in fighting cancer faced some challenges, including off-target side effects, immune system clearance, non-specific uptake, and intratumoral spread of OVs in solid tumors. Although various strategies have been used to overcome the challenges, these strategies have not provided promising outcomes in monotherapy with OVs. In this situation, it is increasingly common to use rational combinations of immunotherapies to improve patient benefit. With the development of other aspects of cancer immunotherapy strategies, combinational therapy has been proposed to improve the anti-tumor activities of OVs. In this regard, OVs were combined with other biotherapeutic platforms, including various forms of antibodies, nanobodies, chimeric antigen receptor (CAR) T cells, and dendritic cells, to reduce the side effects of OVs and enhance their efficacy. This article reviews the promising outcomes of OVs in cancer therapy, the challenges OVs face and solutions, and their combination with other biotherapeutic agents.


Assuntos
Melanoma , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Imunoterapia , Microambiente Tumoral , Anticorpos
3.
Artif Cells Nanomed Biotechnol ; 45(1): 84-89, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26757848

RESUMO

Context Adjuvants are compounds used in the preparation of inactive vaccines to enhance the immune response. Aluminum hydroxide (alum) is one of the first compounds approved by the Food and Drug Administration, which is used as adjuvants in vaccine products for humans. Montanide ISA 70 is an oil-emulsion adjuvant and is used in poultry inactive vaccines. Objective In this study, the effects of alum adjuvant on the efficiency and induction of immune response in inactive vaccines of Influenza and Newcastle are compared with those of ISA 70. Materials and methods Six groups of 7-d-old specific-pathogen-free chickens were inoculated with 0.3 ml of the prepared vaccines via the subcutaneous route in the neck. Immune response in each group after 7, 14, 21, 31, 41, and 45 d was evaluated using the technique of hemagglutination inhibition. Results The results were compared using SPSS software. Results showed that vaccines containing adjuvant ISA 70 depicted a higher increase in the immune response and adjuvant of 20% alum is similar to adjuvant of ISA 70 in boosting the immune system. There was no statistically significant difference between 10% and 20% alum, but these adjuvants are visibly different from ISA 70. Conclusion In conclusion, alum can be used as an easily accessible, harmless, and effective adjuvant; however, to increase the immune period using the inactive vaccines for poultry, more research would be necessary.


Assuntos
Adjuvantes Imunológicos , Hidróxido de Alumínio , Imunidade Humoral/efeitos dos fármacos , Vírus da Influenza A Subtipo H9N2/imunologia , Vacinas contra Influenza , Vírus da Doença de Newcastle/imunologia , Ácidos Oleicos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/química , Hidróxido de Alumínio/farmacologia , Animais , Galinhas , Emulsões , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Doença de Newcastle/imunologia , Doença de Newcastle/prevenção & controle , Ácidos Oleicos/química , Ácidos Oleicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA