Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499457

RESUMO

Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.


Assuntos
Insetos , Transdução de Sinais , Animais , Imunidade Inata
2.
Insects ; 13(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36292900

RESUMO

The massive use of synthetic pesticides to manage agricultural pests results in environmental pollution and health hazards. The secondary plant metabolites, which are majorly dominated by terpenoids, have the potential to be developed into novel alternatives to synthetic chemicals. Therefore, in our current investigation, six majorly dominated essential oil constituents were evaluated for their toxicity against adults and immature stages of oriental fruit flies, Bactrocera dorsalis, a worldwide fruit pest. The results indicated that carvacrol was the most toxic essential oil constituent (EOC) to adult flies, with LC50 of 19.48 mg/mL via fumigant assay, followed by thujone 75% mortality via ingestion toxicity test against adult fruit flies. Similarly, when larvae were dipped in different concentrations of EOCs, carvacrol appeared as the most toxic EOC with the lowest LC50 (29.12 mg/mL), followed by (-)-alpha-pinene (26.54 mg/mL) and (R)-(+)-limonene (29.12 mg/mL). In the oviposition deterrence tests, no egg was observed on oranges seedlings treated with 5% of each EOC (100% repellency). Regarding the repellency assay, a significantly higher number of flies (77%) were repelled from the Y-tube olfactometer arm containing (-)-alpha-pinene, followed by carvacrol (76%). Our results showed that the selected essential oil constituent has the potential to be developed as an alternative to synthetic pesticides against B. dorsalis. However, further research is required to assess the activities of these EOCs under open-field conditions.

3.
Front Microbiol ; 13: 979383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187965

RESUMO

Synthetic pesticides are extensively and injudiciously applied to control agriculture and household pests worldwide. Due to their high use, their toxic residues have enormously increased in the agroecosystem in the past several years. They have caused many severe threats to non-target organisms, including humans. Therefore, the complete removal of toxic compounds is gaining wide attention to protect the ecosystem and the diversity of living organisms. Several methods, such as physical, chemical and biological, are applied to degrade compounds, but as compared to other methods, biological methods are considered more efficient, fast, eco-friendly and less expensive. In particular, employing microbial species and their purified enzymes makes the degradation of toxic pollutants more accessible and converts them into non-toxic products by several metabolic pathways. The digestive tract of insects is usually known as a superior organ that provides a nutrient-rich environment to hundreds of microbial species that perform a pivotal role in various physiological and ecological functions. There is a direct relationship between pesticides and insect pests: pesticides reduce the growth of insect species and alter the phyla located in the gut microbiome. In comparison, the insect gut microbiota tries to degrade toxic compounds by changing their toxicity, increasing the production and regulation of a diverse range of enzymes. These enzymes breakdown into their derivatives, and microbial species utilize them as a sole source of carbon, sulfur and energy. The resistance of pesticides (carbamates, pyrethroids, organophosphates, organochlorines, and neonicotinoids) in insect species is developed by metabolic mechanisms, regulation of enzymes and the expression of various microbial detoxifying genes in insect guts. This review summarizes the toxic effects of agrochemicals on humans, animals, birds and beneficial arthropods. It explores the preferential role of insect gut microbial species in the degradation process and the resistance mechanism of several pesticides in insect species. Additionally, various metabolic pathways have been systematically discussed to better understand the degradation of xenobiotics by insect gut microbial species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA