RESUMO
Uridine diphosphate (UDP)-activated purinergic receptor P2Y6 (P2Y6R) plays a crucial role in controlling energy balance through central mechanisms. However, P2Y6R's roles in peripheral tissues regulating energy and glucose homeostasis remain unexplored. Here, we report the surprising finding that adipocyte-specific deletion of P2Y6R protects mice from diet-induced obesity, improving glucose tolerance and insulin sensitivity with reduced systemic inflammation. These changes were associated with reduced JNK signaling and enhanced expression and activity of PPARα affecting downstream PGC1α levels leading to beiging of white fat. In contrast, P2Y6R deletion in skeletal muscle reduced glucose uptake, resulting in impaired glucose homeostasis. Interestingly, whole body P2Y6R knockout mice showed metabolic improvements similar to those observed with mice lacking P2Y6R only in adipocytes. Our findings provide compelling evidence that P2Y6R antagonists may prove useful for the treatment of obesity and type 2 diabetes.
Assuntos
Adipócitos/metabolismo , Glucose/metabolismo , Homeostase , Receptores Purinérgicos P2/metabolismo , Adipócitos/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/etiologia , Inflamação/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/metabolismo , Receptores Purinérgicos P2/genéticaRESUMO
Various 6-alkynyl analogues of a known 3-nitro-2-(trifluoromethyl)-2H-chromene antagonist 3 of the Gq-coupled P2Y6 receptor (P2Y6R) were synthesized using a Sonogashira reaction to replace a 6-iodo group. The analogues were tested in a functional assay consisting of inhibition of calcium mobilization in P2Y6R-expressing astrocytoma cells elicited by native P2Y6R agonist UDP. 6-Ethynyl and 6-cyano groups were installed, and the alkynes were extended through both alkyl and aryl spacers. The most potent antagonists, with IC50 of ~1 µM, were found to be trialkylsilyl-ethynyl 7 and 8 (3-5 fold greater affinity than reference 3), t-butyl prop-2-yn-1-ylcarbamate 14 and p-carboxyphenyl-ethynyl 16 derivatives, and 3 and 8 displayed surmountable antagonism of UDP-induced production of inositol phosphates. Other chain-extended terminal carboxylate derivatives were less potent than the corresponding methyl ester derivatives. Thus, the 6 position in this chromene series is suitable for derivatization with flexibility of substitution, even with sterically extended chains, without losing P2Y6R affinity. However, a 3-carboxylic acid or 3-ester substitution did not serve as a nitro bioisostere, as the affinity was eliminated. These compounds provide additional ligand tools for the underexplored P2Y6R, which is a target for inflammatory, neurodegenerative and metabolic diseases.
Assuntos
Benzopiranos/farmacologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2/metabolismo , Benzopiranos/síntese química , Benzopiranos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Antagonistas do Receptor Purinérgico P2Y/síntese química , Antagonistas do Receptor Purinérgico P2Y/química , Relação Estrutura-AtividadeRESUMO
The Gq-coupled P2Y6 receptor (P2Y6R) is a component of the purinergic signaling system and functions in inflammatory, cardiovascular and metabolic processes. UDP, the native P2Y6R agonist and P2Y14R partial agonist, is subject to hydrolysis by ectonucleotidases. Therefore, we have synthesized UDP/CDP analogues containing a stabilizing α,ß-methylene bridge as P2Y6R agonists and identified compatible affinity-enhancing pyrimidine modifications. A distal binding region on the receptor was explored with 4-benzyloxyimino cytidine 5'-diphosphate analogues and their potency determined in a calcium mobilization assay. A 4-trifluoromethyl-benzyloxyimino substituent in 25 provided the highest human P2Y6R potency (MRS4554, 0.57 µM), and a 5-fluoro substitution of the cytosine ring in 28 similarly enhanced potency, with >175- and 39-fold selectivity over human P2Y14R, respectively. However, 3-alkyl (31-33, 37, 38), ß-d-arabinofuranose (39) and 6-aza (40) substitution prevented P2Y6R activation. Thus, we have identified new α,ß-methylene bridged N4-extended CDP analogues as P2Y6R agonists that are highly selective over the P2Y14R.
Assuntos
Difosfonatos/farmacologia , Nucleotídeos de Pirimidina/farmacologia , Receptores Purinérgicos P2/metabolismo , Difosfonatos/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Nucleotídeos de Pirimidina/síntese química , Nucleotídeos de Pirimidina/química , Relação Estrutura-AtividadeRESUMO
Prodrugs (MRS7422, MRS7476) of highly selective A3 adenosine receptor (AR) agonists Cl-IB-MECA and MRS5698, respectively, were synthesized by succinylation of the 2' and 3' hydroxyl groups, and the parent, active drug was shown to be readily liberated upon incubation with liver esterases. The prodrug MRS7476 had greatly increased aqueous solubility compared with parent MRS5698 and was fully efficacious and with a longer duration than MRS7422 in reversing mouse neuropathic pain (chronic constriction injury model, 3 µmol/kg, p.o.), a known A3AR effect. MRS7476 (5 mg/kg, p.o., twice daily) was found to protect against non-alcoholic steatohepatitis (NASH) in the STAM mouse model, indicated by the NAFLD activity score. Hepatocyte ballooning, IL-10 production, and liver histology were significantly normalized in the MRS7476-treated mice, but not liver fibrosis (no change in ACTA2 levels) or inflammation. Hepatic expression of ADORA3 in human NAFLD patients was 1.9-fold lower compared to normal controls. Adora3 expression determined by qPCR in primary mouse liver was associated with the stellate cells, and its mouse full body A3AR knockout worsened liver markers of inflammation and steatosis. Thus, we have introduced a reversible prodrug strategy that enables water solubility and in vivo activity of masked A3AR agonists in models of two disease conditions.
Assuntos
Agonistas do Receptor A3 de Adenosina/química , Desenho de Fármacos , Neuralgia/tratamento farmacológico , Pró-Fármacos/química , Adenosina/análogos & derivados , Adenosina/química , Adenosina/uso terapêutico , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Animais , Modelos Animais de Doenças , Inflamação/prevenção & controle , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Pró-Fármacos/uso terapêuticoRESUMO
In a recent article, Leeson-Payne et al. demonstrate that GPR75 knock-out in mice results in lower body fat and reduced hepatic lipid accumulation, with an increase in physical activity and energy expenditure. Loss-of-function (LoF) GPR75 variants in the UK Biobank (UKBB) are associated with reduced liver steatosis, suggesting potential therapeutic implications in metabolic dysfunction-associated steatotic liver disease (MASLD).
Assuntos
Fígado Gorduroso , Obesidade , Animais , Humanos , Obesidade/metabolismo , Fígado Gorduroso/metabolismo , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Camundongos Knockout , Metabolismo Energético/fisiologia , Fígado/metabolismoRESUMO
BACKGROUND: Chikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India. FINDINGS: Clinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country. CONCLUSION: This study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.
Assuntos
Infecções por Alphavirus/epidemiologia , Infecções por Alphavirus/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/genética , Surtos de Doenças , Variação Genética , RNA Viral/genética , Vírus Chikungunya/isolamento & purificação , Análise por Conglomerados , Humanos , Índia/epidemiologia , Mutação de Sentido Incorreto , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Estruturais Virais/genéticaRESUMO
Extracellular uridine nucleotides regulate physiological and pathophysiological metabolic processes through the activation of P2Y2, P2Y4, P2Y6 and P2Y14 purinergic receptors, which play a key role in adipogenesis, glucose uptake, lipolysis and adipokine secretion. Using adipocyte-specific knockout mouse models, it has been demonstrated that lack of the P2Y6R or P2Y14R can protect against diet-induced obesity and improve whole-body glucose metabolism. The P2Y2R facilitated adipogenesis and inflammation, and the loss of P2Y4R or P2Y14R raised the levels of the protective endocrine factor adiponectin. Hence, potent antagonists for these receptors may be tested to identify drug candidates for the treatment of obesity and type 2 diabetes. However, future studies are required to provide insight into purinergic regulation of brown adipocytes and their role in thermogenesis. This review summarizes the current studies on uridine nucleotide-activated P2YRs and their role in adipocyte function, diet-induced obesity and associated metabolic deficits.
Assuntos
Diabetes Mellitus Tipo 2 , Nucleotídeos de Uracila , Adipócitos/metabolismo , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Camundongos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Receptores Purinérgicos/metabolismo , Nucleotídeos de Uracila/metabolismo , Nucleotídeos de Uracila/farmacologiaRESUMO
Extracellular nucleosides and nucleotides activate a group of G protein-coupled receptors (GPCRs) known as purinergic receptors, comprising adenosine and P2Y receptors. Furthermore, purinergic P2X ion channels are activated by ATP. These receptors are expressed in liver resident cells and play a critical role in maintaining liver function. In the normal physiology, these receptors regulate hepatic metabolic processes such as insulin responsiveness, glycogen and lipid metabolism, and bile secretion. In disease states, ATP and other nucleotides serve as danger signals and modulate purinergic responses in the cells. Recent studies have demonstrated that purinergic receptors play a significant role in the development of metabolic syndrome associated non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), fibrosis, hepatocellular carcinoma (HCC) and liver inflammation. In this concise review, we dissect the role of purinergic signaling in different liver resident cells involved in maintaining healthy liver function and in the development of the above-mentioned liver pathologies. Moreover, we discuss potential therapeutic strategies for liver diseases by targeting adenosine, P2Y and P2X receptors.
Assuntos
Adenosina/metabolismo , Hepatopatias/patologia , Receptores Purinérgicos P2X/metabolismo , Receptores Purinérgicos P2Y/metabolismo , Animais , Humanos , Hepatopatias/metabolismo , Transdução de SinaisRESUMO
Purinergic signaling, a concept originally formulated by the late Geoffrey Burnstock (1929-2020), was found to modulate pathways in every physiological system. In metabolic disorders there is a role for both adenosine receptors and P2 (nucleotide) receptors, of which there are two classes, i.e. P2Y metabotropic and P2X ionotropic receptors. The individual roles of the 19 receptors encompassed by this family have been dissected - and in many cases the effects associated with specific cell types, including adipocytes, skeletal muscle, liver cells and immune cells. It is suggested that ligands selective for each of the four adenosine receptors (A1, A2A, A2B and A3), and several of the P2 subtypes (e.g. P2Y6 or P2X7 antagonists) might have therapeutic potential for treating diabetes and obesity. This is a developing story with some conflicting conclusions relevant to drug discovery, which we summarize here.
Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus/metabolismo , Receptores Purinérgicos/metabolismo , Transdução de Sinais/fisiologia , Animais , Diabetes Mellitus/tratamento farmacológico , Humanos , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Agonistas Purinérgicos/administração & dosagem , Antagonistas Purinérgicos/administração & dosagem , Transdução de Sinais/efeitos dos fármacosRESUMO
We compare the GPCR-ligand interactions and highlight important residues for recognition in purinergic receptors-from both X-ray crystallographic and cryo-EM structures. These include A1 and A2A adenosine receptors, and P2Y1 and P2Y12 receptors that respond to ADP and other nucleotides. These receptors are important drug discovery targets for immune, metabolic and nervous system disorders. In most cases, orthosteric ligands are represented, except for one allosteric P2Y1 antagonist. This review catalogs the residues and regions that engage in contacts with ligands or with other GPCR protomers in dimeric forms. Residues that are in proximity to bound ligands within purinergic GPCR families are correlated. There is extensive conservation of recognition motifs between adenosine receptors, but the P2Y1 and P2Y12 receptors are each structurally distinct in their ligand recognition. Identifying common interaction features for ligand recognition within a receptor class that has multiple structures available can aid in the drug discovery process.
Assuntos
Descoberta de Drogas , Dimerização , Humanos , LigantesRESUMO
The incidence of obesity and type 2 diabetes (T2D) has been increasing steadily worldwide. It is estimated that by 2045 more than 800 million people will be suffering from diabetes. Despite the advancements in modern medicine, more effective therapies for treating obesity and T2D are needed. G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity, T2D, and liver diseases. During the past two decades, many laboratories worldwide focused on understanding the role of GPCR signaling in regulating glucose metabolism and energy homeostasis. The information gained from these studies can guide the development of novel therapeutic agents. In this review, we summarize recent studies providing insights into the role of GPCR signaling in peripheral, metabolically important tissues such as pancreas, liver, skeletal muscle, and adipose tissue, focusing primarily on the use of mutant animal models and human data.
Assuntos
Diabetes Mellitus Tipo 2/genética , Resistência à Insulina/genética , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/patologia , Homeostase/genética , Humanos , Fígado/metabolismo , Obesidade/patologia , Pâncreas/metabolismo , Transdução de Sinais/genéticaRESUMO
Hepatic insulin resistance (IR) and enhanced hepatic glucose production (HGP) are key features of type 2 diabetes (T2D), contributing to fasting hyperglycemia. Adenosine receptors (ARs) are G protein-coupled and expressed in hepatocytes. Here, we explored the role of hepatic Gi/o-coupled A1AR on insulin resistance and glucose fluxes associated with obesity. We generated a mouse model with hepatocyte-specific deletion of A1AR (A1LΔ/Δ), which was compared with whole body knockout of A1AR or A1AR/A3AR (both Gi-coupled). Selective deletion of hepatic A1AR resulted in a modest improvement in insulin sensitivity. In addition, HFD A1LΔ/Δ mice showed decreased fasting glucose levels. Hyperinsulinemic-euglycemic clamp studies demonstrated enhanced insulin sensitivity with no change in HGP in HFD A1LΔ/Δ mice. Similar to A1LΔ/Δ, fasting blood glucose levels were significantly reduced in whole body A1Δ/Δ and A1Δ/ΔA3Δ/Δ compared to wild-type mice. Taken together, our data support the concept that blocking hepatic A1AR may decrease fasting blood glucose levels without directly affecting hepatocyte glucose metabolism and insulin sensitivity.
Assuntos
Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Resistência à Insulina/fisiologia , Receptor A1 de Adenosina/deficiência , Animais , Diabetes Mellitus Experimental/genética , Dieta Hiperlipídica/efeitos adversos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor A1 de Adenosina/genéticaRESUMO
Obesity is the key driver of peripheral insulin resistance, one of the key features of type 2 diabetes (T2D). In insulin-resistant individuals, the expansion of beta-cell mass is able to delay or even prevent the onset of overt T2D. Here, we report that beta-arrestin-1 (barr1), an intracellular protein known to regulate signaling through G protein-coupled receptors, is essential for beta-cell replication and function in insulin-resistant mice maintained on an obesogenic diet. Specifically, insulin-resistant beta-cell-specific barr1 knockout mice display marked reductions in beta-cell mass and the rate of beta-cell proliferation, associated with pronounced impairments in glucose homeostasis. Mechanistic studies suggest that the observed metabolic deficits are due to reduced Pdx1 expression levels caused by beta-cell barr1 deficiency. These findings indicate that strategies aimed at enhancing barr1 activity and/or expression in beta-cells may prove useful to restore proper glucose homeostasis in T2D.
Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/patologia , Obesidade/metabolismo , beta-Arrestina 1/metabolismo , Animais , Glicemia/metabolismo , Proliferação de Células , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Proteínas de Homeodomínio/metabolismo , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/patologia , Transativadores/metabolismo , beta-Arrestina 1/genéticaRESUMO
AIM: To study the outcomes of patients presenting with locally advanced rectal cancers with distant metastasis (mLARC), treated with short course radiotherapy (SCRT). METHOD: Between May 2012 and August 2015, 70 patients diagnosed with mLARC, treated with SCRT (25 Gy/5#) and three to six cycles of CAPOX chemotherapy (CT), were assessed for surgical feasibility for the primary and metastatic sites. RESULTS: Sixty-five patients could complete the planned SCRT and three to six cycles of CT. Response rate and disease control rate for the primary was 68% and 97%, respectively. Radiologically, CRM became free in 44 (72%) patients out of 61 initially involved. Fifty-two (74%) were planned to receive treatment with a potentially curative intent and 18 (26%) with palliative intent. Of those treated with curative intent, 34 (65%) underwent primary tumor resection (PTR). Successful intervention for metastatic disease was done in 27 (52%) patients. At a median follow up of 43 months, the median overall survival (OS) for patients undergoing PTR was 36 months versus 12 months for those in which the tumor was still unresectable or had distant progression (P < .001). Of the operated patients, 56% were alive at the end of 3 years. The median pelvic recurrence free survival was 29 months. Symptom control in the form of pain and bleeding control was observed in 80%. CONCLUSION: The addition of SCRT to CT in mLARC can downstage the primary tumor to undergo surgery, thereby, achieving better loco-regional control and survival. It achieves good palliation in patients unable to undergo surgery due to extensive primary or metastatic disease.
Assuntos
Neoplasias Retais/radioterapia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias Retais/patologiaRESUMO
Obesity is the major driver of the worldwide epidemic in type 2 diabetes (T2D). In the obese state, chronically elevated plasma free fatty acid levels contribute to peripheral insulin resistance, which can ultimately lead to the development of T2D. For this reason, drugs that are able to regulate lipolytic processes in adipocytes are predicted to have considerable therapeutic potential. Gi-coupled P2Y14 receptor (P2Y14R; endogenous agonist, UDP-glucose) is abundantly expressed in both mouse and human adipocytes. Because activated Gi-type G proteins exert an antilipolytic effect, we explored the potential physiological relevance of adipocyte P2Y14Rs in regulating lipid and glucose homeostasis. Metabolic studies indicate that the lack of adipocyte P2Y14R enhanced lipolysis only in the fasting state, decreased body weight, and improved glucose tolerance and insulin sensitivity. Mechanistic studies suggested that adipocyte P2Y14R inhibits lipolysis by reducing lipolytic enzyme activity, including ATGL and HSL. In agreement with these findings, agonist treatment of control mice with a P2Y14R agonist decreased lipolysis, an effect that was sensitive to inhibition by a P2Y14R antagonist. In conclusion, we demonstrate that adipose P2Y14Rs were critical regulators of whole-body glucose and lipid homeostasis, suggesting that P2Y14R antagonists might be beneficial for the therapy of obesity and T2D.
Assuntos
Glucose/metabolismo , Lipólise/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
A better understanding of the signaling pathways regulating adipocyte function is required for the development of new classes of antidiabetic/obesity drugs. We here report that mice lacking ß-arrestin-1 (barr1), a cytoplasmic and nuclear signaling protein, selectively in adipocytes showed greatly impaired glucose tolerance and insulin sensitivity when consuming an obesogenic diet. In contrast, transgenic mice overexpressing barr1 in adipocytes were protected against the metabolic deficits caused by a high-calorie diet. Barr1 deficiency led to a myogenic reprogramming of brown adipose tissue (BAT), causing elevated plasma myostatin (Mstn) levels, which in turn led to impaired insulin signaling in multiple peripheral tissues. Additional in vivo studies indicated that barr1-mediated suppression of Mstn expression by BAT is required for maintaining euglycemia. These findings convincingly identify barr1 as a critical regulator of BAT function. Strategies aimed at enhancing barr1 activity in BAT may prove beneficial for the treatment of type 2 diabetes.
RESUMO
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
RESUMO
BACKGROUND: The optimal use and sequencing of short-course radiotherapy (SCRT) in metastatic rectal cancers (mRCs) are not well established. MATERIALS AND METHODS: We retrospectively reviewed the records of mRC patients receiving SCRT followed by palliative chemotherapy between January 1, 2013, and December 31, 2016, in Tata Memorial Hospital. Patients were classified as having "potentially resectable" disease (local and metastatic) or "unresectable" disease at baseline based on prespecified criteria. RESULTS: A total of 105 consecutive patients were available for analysis. The median age of patients was 48 years (range: 16-62 years), and 57.1% were male patients. Signet ring histology was seen in 13.3% of patients. The most common site of metastases was liver limited (29.5%), nonloco-regional nodes (12.4%), and lung limited metastases (9.5%). Chemotherapeutic regimens administered were capecitabine-oxaliplatin (70.5%), modified 5 fluorouracil (5 FU)-leucovorin-irinotecan-oxaliplatin (10.5%), and modified 5 FU-leucovorin-irinotecan (8.6%). Targeted therapy accompanying chemotherapy was administered in 27.6% of patients. About 42.1% of patients with potentially resectable disease and 11.1% with the unresectable disease at baseline underwent curative-intent resection of the primary and address of metastatic sites. With a median follow-up 18.2 months, median overall survival (OS) was 15.7 months (95% confidence interval: 10.42-20.99). Patients classified as potentially resectable had a median OS of 32.62 months while patients initially classified as unresectable had a median OS of 13.04 months (P = 0.016). The presence of signet ring morphology predicted for inferior mOS (P = 0.021). CONCLUSIONS: SCRT followed by systemic therapy in mRC is a feasible, efficacious paradigm for maximizing palliation, and achieving objective responses. The classification of patients based on resectability was predictive of actual resection rates as well as outcomes. Signet ring mRC show inferior outcomes in this cohort of patients.
RESUMO
Cluster of differentiation 73 (CD73) converts adenosine 5'-monophosphate to immunosuppressive adenosine, and its inhibition was proposed as a new strategy for cancer treatment. We synthesized 5'- O-[(phosphonomethyl)phosphonic acid] derivatives of purine and pyrimidine nucleosides, which represent nucleoside diphosphate analogues, and compared their CD73 inhibitory potencies. In the adenine series, most ribose modifications and 1-deaza and 3-deaza were detrimental, but 7-deaza was tolerated. Uracil substitution with N3-methyl, but not larger groups, or 2-thio, was tolerated. 1,2-Diphosphono-ethyl modifications were not tolerated. N4-(Aryl)alkyloxy-cytosine derivatives, especially with bulky benzyloxy substituents, showed increased potency. Among the most potent inhibitors were the 5'- O-[(phosphonomethyl)phosphonic acid] derivatives of 5-fluorouridine (4l), N4-benzoyl-cytidine (7f), N4-[ O-(4-benzyloxy)]-cytidine (9h), and N4-[ O-(4-naphth-2-ylmethyloxy)]-cytidine (9e) ( Ki values 5-10 nM at human CD73). Selected compounds tested at the two uridine diphosphate-activated P2Y receptor subtypes showed high CD73 selectivity, especially those with large nucleobase substituents. These nucleotide analogues are among the most potent CD73 inhibitors reported and may be considered for development as parenteral drugs.
Assuntos
5'-Nucleotidase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Nucleotídeos de Purina/química , Nucleotídeos de Purina/farmacologia , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/farmacologia , Animais , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos , Ratos , Relação Estrutura-AtividadeRESUMO
ß-Arrestins are major regulators of G protein-coupled receptor-mediated signaling processes. Their potential roles in regulating adipocyte function in vivo remain unexplored. Here we report the novel finding that mice lacking ß-arrestin-2 (barr2) selectively in adipocytes show significantly reduced adiposity and striking metabolic improvements when consuming excess calories. We demonstrate that these beneficial metabolic effects are due to enhanced signaling through adipocyte ß3-adrenergic receptors (ß3-ARs), indicating that barr2 represents a potent negative regulator of adipocyte ß3-AR activity in vivo. Interestingly, essentially all beneficial metabolic effects caused by adipocyte barr2 deficiency are absent in adipocyte barr2-PRDM16 double KO mice, indicating that the metabolic improvements caused by the lack of barr2 in adipocytes are mediated by the browning/beiging of white adipose tissue. Our data support the novel concept that 'G protein-biased' ß3-AR agonists that do not promote ß3-AR/barr2 interactions may prove useful for the treatment of obesity and related metabolic disorders.