Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 15(9): e1008385, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31550250

RESUMO

Iran, despite its size, geographic location and past cultural influence, has largely been a blind spot for human population genetic studies. With only sparse genetic information on the Iranian population available, we pursued its genome-wide and geographic characterization based on 1021 samples from eleven ethnic groups. We show that Iranians, while close to neighboring populations, present distinct genetic variation consistent with long-standing genetic continuity, harbor high heterogeneity and different levels of consanguinity, fall apart into a cluster of similar groups and several admixed ones and have experienced numerous language adoption events in the past. Our findings render Iran an important source for human genetic variation in Western and Central Asia, will guide adequate study sampling and assist the interpretation of putative disease-implicated genetic variation. Given Iran's internal genetic heterogeneity, future studies will have to consider ethnic affiliations and possible admixture.


Assuntos
Etnicidade/genética , Variação Genética/genética , Adulto , Idoso , Consanguinidade , Feminino , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Humanos , Irã (Geográfico)/etnologia , Masculino , Pessoa de Meia-Idade
2.
Clin Genet ; 100(1): 59-78, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713422

RESUMO

Hearing loss (HL) is one of the most common sensory defects affecting more than 466 million individuals worldwide. It is clinically and genetically heterogeneous with over 120 genes causing non-syndromic HL identified to date. Here, we performed exome sequencing (ES) on a cohort of Iranian families with no disease-causing variants in known deafness-associated genes after screening with a targeted gene panel. We identified likely causal variants in 20 out of 71 families screened. Fifteen families segregated variants in known deafness-associated genes. Eight families segregated variants in novel candidate genes for HL: DBH, TOP3A, COX18, USP31, TCF19, SCP2, TENM1, and CARMIL1. In the three of these families, intrafamilial locus heterogeneity was observed with variants in both known and novel candidate genes. In aggregate, we were able to identify the underlying genetic cause of HL in nearly 30% of our study cohort using ES. This study corroborates the observation that high-throughput DNA sequencing in populations with high rates of consanguineous marriages represents a more appropriate strategy to elucidate the genetic etiology of heterogeneous conditions such as HL.


Assuntos
Exoma/genética , Predisposição Genética para Doença/genética , Perda Auditiva/genética , Adolescente , Adulto , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Sequenciamento do Exoma/métodos , Adulto Jovem
3.
J Hum Genet ; 65(7): 609-617, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32231217

RESUMO

Mutations in the CDC14A (Cell Division-Cycle 14A) gene, which encodes a conserved dual-specificity protein tyrosine phosphatase, have been identified as a cause of autosomal recessive non-syndromic hearing loss (DFNB32) and hearing impairment infertility male syndrome (HIIMS). We used next-generation sequencing to screen six deaf probands from six families segregating sensorineural moderate-to-profound hearing loss. Data analysis and variant prioritization were completed using a custom bioinformatics pipeline. We identified three homozygous loss of function variants (p.Arg345Ter, p.Arg376Ter, and p.Ala451Thrfs*43) in the CDC14A gene, segregating with deafness in each family. Of the six families, four segregated the p.Arg376Ter mutation, one family segregated the p.Arg345Ter mutation and one family segregated a novel frameshift (p.Ala451Thrfs*43) mutation. In-depth phenotyping of affected individuals ruled out secondary syndromic findings. This study implicates the p.Arg376Ter mutation might be as a founder mutation in the Iranian population. It also provides the first semen analysis for deaf males carrying mutations in exon 11 of CDC14A and reveals a genotype-phenotype correlation that delineates between DFNB32 and HIIMS. The clinical results from affected males suggest the NM_033313.2 transcript alone is sufficient for proper male fertility, but not for proper auditory function. We conclude that DFNB32 is a distinct phenotypic entity in males.


Assuntos
Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Infertilidade Masculina/genética , Proteínas Tirosina Fosfatases/genética , Adolescente , Adulto , Diagnóstico Diferencial , Éxons/genética , Feminino , Mutação da Fase de Leitura/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Perda Auditiva/complicações , Perda Auditiva/diagnóstico , Perda Auditiva/patologia , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infertilidade Masculina/complicações , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/patologia , Irã (Geográfico) , Masculino , Linhagem , Adulto Jovem
4.
Hum Mutat ; 40(11): 1968-1984, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31343797

RESUMO

Considering the application of human genome variation databases in precision medicine, population-specific genome projects are continuously being developed. However, the Middle Eastern population is underrepresented in current databases. Accordingly, we established Iranome database (www.iranome.com) by performing whole exome sequencing on 800 individuals from eight major Iranian ethnic groups representing the second largest population of Middle East. We identified 1,575,702 variants of which 308,311 were novel (19.6%). Also, by presenting higher frequency for 37,384 novel or known rare variants, Iranome database can improve the power of molecular diagnosis. Moreover, attainable clinical information makes this database a good resource for classifying pathogenicity of rare variants. Principal components analysis indicated that, apart from Iranian-Baluchs, Iranian-Turkmen, and Iranian-Persian Gulf Islanders, who form their own clusters, rest of the population were genetically linked, forming a super-population. Furthermore, only 0.6% of novel variants showed counterparts in "Greater Middle East Variome Project", emphasizing the value of Iranome at national level by releasing a comprehensive catalog of Iranian genomic variations and also filling another gap in the catalog of human genome variations at international level. We introduce Iranome as a resource which may also be applicable in other countries located in neighboring regions historically called Greater Iran (Persia).


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Etnicidade/genética , Genoma Humano , Genômica , Navegador , Variação Genética , Genética Populacional , Genômica/métodos , Genótipo , Geografia , Humanos , Irã (Geográfico) , Oriente Médio , Anotação de Sequência Molecular
5.
Arch Iran Med ; 27(2): 79-88, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619031

RESUMO

BACKGROUND: The study of Y-chromosomal variations provides valuable insights into male susceptibility in certain diseases like cardiovascular disease (CVD). In this study, we analyzed paternal lineage in different Iranian ethnic groups, not only to identify developing medical etiology, but also to pave the way for gender-specific targeted strategies and personalized medicine in medical genetic research studies. METHODS: The diversity of eleven Iranian ethnic groups was studied using 27 Y-chromosomal short tandem repeat (Y-STR) haplotypes from Y-filer® Plus kit. Analysis of molecular variance (AMOVA) based on pair-wise RST along with multidimensional scaling (MDS) calculation and Network phylogenic analysis was employed to quantify the differences between 503 unrelated individuals from each ethnicity. RESULTS: Results from AMOVA calculation confirmed that Gilaks and Azeris showed the largest genetic distance (RST=0.35434); however, Sistanis and Lurs had the smallest considerable genetic distance (RST=0.00483) compared to other ethnicities. Although Azeris had a considerable distance from other ethnicities, they were still close to Turkmens. MDS analysis of ethnic groups gave the indication of lack of similarity between different ethnicities. Besides, network phylogenic analysis demonstrated insignificant clustering between samples. CONCLUSION: The AMOVA analysis results explain that the close distance of Azeris and Turkmens may be the effect of male-dominant expansions across Central Asia that contributed to historical and demographics of populations in the region. Insignificant differences in network analysis could be the consequence of high mutation events that happened in the Y-STR regions over the years. Considering the ethnic group affiliations in medical research, our results provided an understanding and characterization of Iranian male population for future medical and population genetics studies.


Assuntos
Pesquisa Biomédica , Etnicidade , Humanos , Masculino , Etnicidade/genética , Haplótipos , Irã (Geográfico) , Análise de Variância
6.
Arch Iran Med ; 26(3): 176-180, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543941

RESUMO

Genetic analysis of non-syndromic hearing loss (NSHL) has been challenged due to marked clinical and genetic heterogeneity. Today, advanced next-generation sequencing (NGS) technologies, such as exome sequencing (ES), have drastically increased the efficacy of gene identification in heterogeneous Mendelian disorders. Here, we present the utility of ES and re-evaluate the phenotypic data for identifying candidate causal variants for previously unexplained progressive moderate to severe NSHL in an extended Iranian family. Using this method, we identified a known heterozygous nonsense variant in exon 26 of the DIAPH1 gene (MIM: 602121), which led to "Deafness, autosomal dominant 1, with or without thrombocytopenia; DFNA1" (MIM: 124900) in this large family in the absence of GJB2 disease-causing variants and also OtoSCOPE-negative results. To the best of our knowledge, this nonsense variant (NM_001079812.3):c.3610C>T (p.Arg1204Ter) is the first report of the DIAPH1 gene variant for autosomal dominant non-syndromic hearing loss (ADNSHL) in Iran.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Humanos , Irã (Geográfico) , Códon sem Sentido , Surdez/genética , Linhagem , Mutação , Forminas/genética
7.
Arch Iran Med ; 26(2): 69-75, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543926

RESUMO

BACKGROUND: Global real-time monitoring of SARS-CoV-2 variants is crucial to controlling the COVID-19 outbreak. The purpose of this study was to set up a Sanger-based platform for massive SARS-CoV-2 variant tracking in laboratories in low-resource settings. METHODS: We used nested RT-PCR assay, Sanger sequencing and lineage assignment for 930-bp of the SARS-CoV-2 spike gene, which harbors specific variants of concern (VOCs) mutations. We set up our platform by comparing its results with whole genome sequencing (WGS) data on 137 SARS-CoV-2 positive samples. Then, we applied it on 1028 samples from March-September 2021. RESULTS: In total, 125 out of 137 samples showed 91.24% concordance in mutation detection. In lineage assignment, 123 out of 137 samples demonstrated 89.78% concordance, 65 of which were assigned as VOCs and showed 100% concordance. Of 1028 samples screened by our in-house method, 78 distinct mutations were detected. The most common mutations were: S:D614G (21.91%), S:P681R (12.19%), S:L452R (12.15%), S:T478K (12.15%), S:N501Y (8.91%), S:A570D (8.89%), S:P681H (8.89%), S:T716I (8.74%), S:L699I (3.50%) and S:S477N (0.28%). Of 1028 samples, 980 were attributed as VOCs, which include the Delta (B.1.617.2) and Alpha (B.1.1.7) variants. CONCLUSION: Our proposed in-house Sanger-based assay for SARS-CoV-2 lineage assignment is an accessible strategy in countries with poor infrastructure facilities. It can be applied in the rapid tracking of SARS-CoV-2 VOCs in the SARS-CoV-2 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Surtos de Doenças , Laboratórios , Mutação
8.
Am J Med Genet A ; 158A(8): 1857-64, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22736430

RESUMO

MYO15A is located at the DFNB3 locus on chromosome 17p11.2, and encodes myosin-XV, an unconventional myosin critical for the formation of stereocilia in hair cells of cochlea. Recessive mutations in this gene lead to profound autosomal recessive nonsyndromic hearing loss (ARNSHL) in humans and the shaker2 (sh2) phenotype in mice. Here, we performed a study on 140 Iranian families in order to determine mutations causing ARNSHL. The families, who were negative for mutations in GJB2, were subjected to linkage analysis. Eight of these families showed linkage to the DFNB3 locus, suggesting a MYO15A mutation frequency of 5.71% in our cohort of Iranian population. Subsequent sequencing of the MYO15A gene led to identification of 7 previously unreported mutations, including 4 missense mutations, 1 nonsense mutation, and 2 deletions in different regions of the myosin-XV protein.


Assuntos
Surdez/genética , Genes Recessivos , Mutação , Miosinas/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 17 , Conexina 26 , Conexinas , Feminino , Humanos , Irã (Geográfico) , Masculino , Linhagem
9.
Transbound Emerg Dis ; 69(3): 1375-1386, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33835709

RESUMO

The SARS-CoV-2 virus has been rapidly spreading globally since December 2019, triggering a pandemic, soon after its emergence. While Iran was among the first countries confronted with rapid spread of virus in February 2020, no real-time SARS-CoV-2 whole-genome tracking in early phase of outbreak was performed in the country. To address this issue, we provided 50 whole-genome sequences of viral isolates ascertained from different geographical locations in Iran during March-July 2020. The corresponding analysis on origins, transmission dynamics and genetic diversity of SARS-CoV-2 virus, represented at least two introductions of the virus into the country, constructing two major clusters defined as B.4 and B.1*. The first entry of the virus might have occurred around very late 2019/early 2020, as suggested by the time to the most recent common ancestor, followed by a rapid community transmission that led to dominancy of B.4 lineage in early epidemic till the end of June. Gradually, reduction in dominancy of B.4 occurred possibly as a result of other entries of the virus, followed by surge of B.1* lineages, as of mid-May. Remarkably, variation tracking of the virus indicated the increase in frequency of D614G mutation, along with B.1* lineages, which showed continuity till October 2020. The increase in frequency of D614G mutation and B.1* lineages from mid-May onwards predicts a rapid viral transmission that may push the country into a critical health situation followed by a considerable change in composition of viral lineages circulating in the country.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/epidemiologia , COVID-19/veterinária , Surtos de Doenças/veterinária , Genoma Viral , Irã (Geográfico)/epidemiologia , Filogenia , SARS-CoV-2/genética
10.
Arch Iran Med ; 25(8): 508-522, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37543873

RESUMO

BACKGROUND: Complete SARS-CoV-2 genome sequencing in the early phase of the outbreak in Iran showed two independent viral entries. Subsequently, as part of a genome surveillance project, we aimed to characterize the genetic diversity of SARS-CoV-2 in Iran over one year after emerging. METHODS: We provided 319 SARS-CoV-2 whole-genome sequences used to monitor circulating lineages in March 2020-May 2021 time interval. RESULTS: The temporal dynamics of major SARS-CoV-2 clades/lineages circulating in Iran is comparable to the global perspective and represent the 19A clade (B.4) dominating the first disease wave, followed by 20A (B.1.36), 20B (B.1.1.413), 20I (B.1.1.7), leading the second, third and fourth waves, respectively. We observed a mixture of circulating B.1.36, B.1.1.413, B.1.1.7 lineages in winter 2021, paralleled in a fading manner for B.1.36/B.1.1.413 and a growing rise for B.1.1.7, prompting the fourth outbreak. Entry of the Delta variant, leading to the fifth disease wave in summer 2021, was detected in April 2021. This study highlights three lineages as hallmarks of the SARS-CoV-2 outbreak in Iran; B4, dominating early periods of the epidemic, B.1.1.413 (B.1.1 with the combination of [D138Y-S477N-D614G] spike mutations) as a characterizing lineage in Iran, and the co-occurrence of [I100T-L699I] spike mutations in half of B.1.1.7 sequences mediating the fourth peak. It also designates the renowned combination of G and GR clades' mutations as the top recurrent mutations. CONCLUSION: In brief, we provided a real-time and comprehensive picture of the SARS-CoV-2 genetic diversity in Iran and shed light on the SARS-CoV-2 transmission and circulation on the regional scale.


Assuntos
COVID-19 , Pandemias , Humanos , COVID-19/epidemiologia , Irã (Geográfico)/epidemiologia , SARS-CoV-2/genética , Mutação
11.
Am J Med Genet A ; 155A(10): 2453-8, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21910243

RESUMO

Mutations in GJB2 are a major cause of autosomal recessive non-syndromic hearing loss (ARNSHL) in many populations. A single mutation of this gene (35delG) accounts for approximately 70% of GJB2 mutations that are associated with ARNSHL in Caucasians in many European countries and also in Iranian. In this study, we used PCR and restriction digestion to genotype five single nucleotide polymorphisms (SNPs) that define the genetic background of the 35delG mutation over an interval of 98 Kbp that includes the coding and flanking regions of GJB2. Two microsatellite markers, D13S175 and D13S141, were also analyzed in patients and controls. These data suggest that the 35delG mutation originated in northern Iran.


Assuntos
Conexinas/genética , Emigração e Imigração/história , Perda Auditiva/etnologia , Perda Auditiva/genética , Deleção de Sequência/genética , Conexina 26 , Feminino , Genes Recessivos/genética , Genética Populacional , História Antiga , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Repetições de Microssatélites/genética , Polimorfismo de Nucleotídeo Único/genética
12.
Arch Iran Med ; 23(5): 319-325, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32383616

RESUMO

BACKGROUND: Ménière's disease (MD) is a common inner ear disorder which is characterized by recurrent attacks of vertigo, fluctuating sensorineural hearing loss (SNHL), tinnitus, and a sense of fullness in the affected ear. MD is a complex disorder; although six genes have been linked to familial autosomal dominant form of the disease, in many cases, the exact genetic etiology remains elusive. METHODS: To elucidate the genetic causes of MD in an Iranian family, we performed exome sequencing on all members of the family: consanguineous parents and four children (two affected and two unaffected). Variant filtering was completed using a customized workflow keeping variants based on segregation with MD in autosomal recessive (AR) inheritance pattern, minor allele frequency (MAF), and in-silico prediction of pathogenicity. RESULTS: Analysis revealed that in this family, 970 variants co-segregated with MD in AR pattern, out of which eight variants (one intergenic, four intronic, and three exonic) were extremely rare. The exonic variants included a synonymous substitution in USP3 gene, an in-frame deletion in ZBED2 gene, and a rare, highly conserved deleterious missense alteration in LSAMP gene. CONCLUSION: The phenotype observed in the proband described here, i.e. vertigo, poor sense of smell, tinnitus, and borderline hearing ability, may originate from aberrant changes in the cerebellum and limbic system due to a deleterious mutation in the LSAMP gene; hence, LSAMP mutation is a possible candidate for the etiology of MD in this family.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Doença de Meniere/genética , Doença de Meniere/fisiopatologia , Adulto , Saúde da Família , Feminino , Proteínas Ligadas por GPI/genética , Perda Auditiva Neurossensorial/etiologia , Humanos , Irã (Geográfico) , Doença de Meniere/complicações , Mutação , Transtornos do Olfato/etiologia , Fenótipo , Zumbido/etiologia , Vertigem/etiologia , Sequenciamento do Exoma
13.
Arch Iran Med ; 22(4): 189-197, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31126177

RESUMO

BACKGROUND: Hearing loss (HL) is the most common sensory deficit in humans, and genetic factors contribute to about half of the cases. With 112 causative genes identified so far and a disproportionate share of the genes within different ethnic groups, HL has proven to be quite heterogeneous. METHODS: Twenty Iranian families having at least 2 children with hereditary HL were initially verified to be GJB2-negative and were then subjected to whole exome sequencing (WES). Sanger sequencing was used to confirm segregation of the variant identified in each family. RESULTS: In 3 families, WES revealed 3 novel variants in KCNQ4, LHFPL5 and COCH genes. The KCNQ4 gene (DFNA2A) encodes a potassium channel (KV7.4) and the heterozygous variant identified (c.1647C>G, p.F549L) resulted in the substitution of Phe549 residing in the KV7.4 cytoplasmic region. The homozygous variant (c.34A>T, p.K12X) was identified in the LHFPL5 gene (DFNB67) which encodes a transmembrane protein, and another variant in a homozygous state (c.116T>A, p.L39X) was identified in the COCH gene which encodes a secretory protein. Pathogenic variants in the COCH gene are associated with late onset autosomal dominant hearing loss (DFNA9) but the affected individuals displayed early onset HL with a recessive mode of inheritance. CONCLUSION: The 16% contribution of GJB2 to HL in the Iranian population necessitates the discovery of the remaining causal factors. This study is the first to report KCNQ4 and COCH related HL in the Iranian population and the second study, globally, to report HL due to biallelic inactivation of the COCH gene.


Assuntos
Proteínas da Matriz Extracelular/genética , Perda Auditiva/genética , Canais de Potássio KCNQ/genética , Proteínas de Membrana/genética , Adolescente , Adulto , Feminino , Heterozigoto , Homozigoto , Humanos , Irã (Geográfico) , Masculino , Mutação , Linhagem , Sequenciamento do Exoma , Adulto Jovem
14.
Int J Pediatr Otorhinolaryngol ; 117: 115-126, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30579064

RESUMO

OBJECTIVE: Hereditary hearing loss is the most common neurosensory disorder in humans caused by myriad mutations in numerous genes. Autosomal recessive nonsyndromic hearing loss (ARNSHL) accounts for 80% of hearing impairments of genetic origin and is quite prevalent in societies with a high rate of consanguinity. In the current study, we investigated the causes of sensorineural hearing loss in 24 unrelated Iranian families who were mainly consanguineous and had at least two affected children. METHODS: All probands were initially screened for GJB2 mutations, as the most common causes of ARNSHL in Iran. Verified GJB2-negative samples were subsequently subjected to whole exome sequencing (WES) to identify the underlying causes of hearing impairment, and the variants identified in each family were further confirmed by Sanger sequencing. RESULTS: WES revealed three previously unreported mutations in MYO15A, the gene encoding the unconventional myosin 15 (Myo15). All variants identified, c.C6436T (p.R2146W), c.C9584G (p.P3195R) and c.G10266C (p.Q3422H), reside in the MYTH4 (myosin tail homology) and FERM (4.1 ezrin, radixin, moesin) domains of the protein. CONCLUSION: Globally, mutations in MYO15A are considered to be among the most prevalent genetic causes of ARNSHL, and they rank as the third leading cause of hearing loss in the Iranian population, below GJB2 and SLC26A4. Yet again, these results endorse the importance of MYO15 screening in hearing impaired populations, particularly in Iran.


Assuntos
Surdez/genética , Domínios FERM/genética , Perda Auditiva Neurossensorial/genética , Miosinas/genética , Consanguinidade , Feminino , Humanos , Irã (Geográfico) , Masculino , Mutação , Sequenciamento do Exoma
15.
Acta Med Iran ; 52(5): 352-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24902015

RESUMO

Coronary artery disease (CAD) is the leading cause of mortality in many parts of the world. Genome-wide association studies (GWAS) have identified several genetic variants associated with CAD in Low-density lipoprotein receptor (LDLR) locus. This study was evaluated the possible association of genetic markers at LDLR locus with CAD irrespective to lipid profile and as well as the association of these SNPs with severity of CAD in Iranian population. Sequencing of 2 exons in LDLR gene (Exon 2, 12) and part of intron 30 of SMARCA4 gene include rs1122608, was performed in 170 Iranian patients angiographically confirmed CAD and 104 healthy controls by direct sequencing. Sullivan's scoring system was used for determining the severity of CAD in cases. Our results showed that homozygote genotypes of rs1122608 (P<0.0001), rs4300767 (P<0.005) and rs10417578 (p<0.007) SNPs have strong protective effects on the CAD. In addition, we found that rs1122608 (GT or TT) was at higher risk of three vessel involvement compared to single vessels affecting (P=0.01).


Assuntos
Doença da Artéria Coronariana/genética , DNA/genética , Predisposição Genética para Doença , Polimorfismo Genético , Receptores de LDL/genética , Idoso , Doença da Artéria Coronariana/sangue , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Receptores de LDL/sangue
16.
Int J Pediatr Otorhinolaryngol ; 76(2): 268-71, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22172221

RESUMO

OBJECTIVE: Hereditary hearing impairment is a genetically heterogeneous disorder. In spite of this, mutations in the GJB2 gene, encoding connexin 26 (Cx26), are a major cause of nonsyndromic recessive hearing loss in many countries and are largely dependent on ethnic groups. The purpose of our study was to characterize the type and prevalence of GJB2 mutations among Azeri population of Iran. METHODS: Fifty families presenting autosomal recessive nonsyndromic hearing loss from Ardabil province of Iran were studied for mutations in GJB2 gene. All DNA samples were screened for c.35delG mutation by ARMS PCR. Samples from patients who were normal for c.35delG were analyzed for the other variations in GJB2 by direct sequencing. In the absence of mutation detection, GJB6 was screened for the del(GJB6-D13S1830) and del(GJB6-D13S1854). RESULT: Thirteen families demonstrated alteration in the Cx26 (26%). The 35delG mutation was the most common one, accounting for 69.2% (9 out of 13 families). All the detected families were homozygous for this mutation. Two families were homozygous for delE120 and 299-300delAT mutations. We also identified a novel mutation: c.463-464 delTA in 2 families resulting in a frame shift mutation. CONCLUSION: Our results suggest that c.35delG mutation in the GJB2 gene is the most important cause of GJB2 related deafness in Iranian Azeri population.


Assuntos
Árabes/genética , Conexinas/genética , Predisposição Genética para Doença/epidemiologia , Testes Genéticos/métodos , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/genética , Mutação , Azerbaijão/etnologia , Estudos de Casos e Controles , Conexina 26 , Feminino , Genes Recessivos , Perda Auditiva Neurossensorial/diagnóstico , Homozigoto , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Linhagem , Reação em Cadeia da Polimerase/métodos , Prevalência
17.
Laryngoscope ; 119(4): 727-33, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19274735

RESUMO

OBJECTIVES: To use clinical and genetic analyses to determine the mutation causing autosomal recessive nonsyndromic hearing loss (ARNSHL) segregating in two consanguineous Iranian families. STUDY DESIGN: Family study. METHODS: Members of each family received otologic and audiometric examination for the type and extent of hearing loss. Linkage mapping using Affymetrix 50K GeneChips and short tandem repeat (STRP) analysis localized the hearing loss in both families to the DFNB3 locus. Direct sequencing of the MYO15A gene was completed on affected members of both families. RESULTS: Family L-3165 segregated a novel homozygous missense mutation (c.6371G>A) that results in a p.R2124Q amino acid substitution in the myosin XVa protein, while family L-896 segregated a novel homozygous missense (c.6555C>T) mutation resulting in a p.P2073S amino acid change. CONCLUSIONS: These are the first MYO15A mutations reported to cause DFNB3 sensorineural hearing loss in the Iranian population. Like other mutations located in the myosin tail homology 4 (MyTH4) domain, the p.R2124Q and p.P2073S mutations are predicted to disrupt the function of the myosin XVa protein, which is integral to the mechanosensory activity of hair cells in the inner ear.


Assuntos
Cromossomos Humanos Par 17/genética , Perda Auditiva Neurossensorial/genética , Mutação de Sentido Incorreto , Miosinas/genética , Mapeamento Cromossômico , Consanguinidade , Feminino , Genótipo , Humanos , Irã (Geográfico) , Escore Lod , Masculino , Linhagem , Análise de Sequência de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA