Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Chromosomes Cancer ; 63(1): e23189, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37421230

RESUMO

Malignant pleural mesothelioma (MPM), a rare cancer a long latency period (up to 40 years) between asbestos exposure and disease presentation. The mechanisms coupling asbestos to recurrent somatic alterations are poorly defined. Gene fusions arising through genomic instability may create novel drivers during early MPM evolution. We explored the gene fusions that occurred early in the evolutionary history of the tumor. We conducted multiregional whole exome sequencing (WES) of 106 samples from 20 patients undergoing pleurectomy decortication and identified 24 clonal nonrecurrent gene fusions, three of which were novel (FMO9P-OR2W5, GBA3, and SP9). The number of early gene fusion events detected varied from zero to eight per tumor, and presence of gene fusions was associated with clonal losses involving the Hippo pathway genes and homologous recombination DNA repair genes. Fusions involved known tumor suppressors BAP1, MTAP, and LRP1B, and a clonal oncogenic fusion involving CACNA1D-ERC2, PARD3B-NT5DC2, and STAB2-NT5DC2 fusions were also identified as clonal fusions. Gene fusions events occur early during MPM evolution. Individual fusions are rare as no recurrent truncal fusions event were found. This suggests the importance of early disruption of these pathways in generating genomic rearrangements resulting in potentially oncogenic gene fusions.


Assuntos
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Humanos , Mesotelioma Maligno/genética , Via de Sinalização Hippo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesotelioma/genética , Reparo do DNA/genética , Fusão Gênica
2.
Nat Commun ; 12(1): 1751, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741915

RESUMO

Malignant Pleural Mesothelioma (MPM) is typically diagnosed 20-50 years after exposure to asbestos and evolves along an unknown evolutionary trajectory. To elucidate this path, we conducted multi-regional exome sequencing of 90 tumour samples from 22 MPMs acquired at surgery. Here we show that exomic intratumour heterogeneity varies widely across the cohort. Phylogenetic tree topology ranges from linear to highly branched, reflecting a steep gradient of genomic instability. Using transfer learning, we detect repeated evolution, resolving 5 clusters that are prognostic, with temporally ordered clonal drivers. BAP1/-3p21 and FBXW7/-chr4 events are always early clonal. In contrast, NF2/-22q events, leading to Hippo pathway inactivation are predominantly late clonal, positively selected, and when subclonal, exhibit parallel evolution indicating an evolutionary constraint. Very late somatic alteration of NF2/22q occurred in one patient 12 years after surgery. Clonal architecture and evolutionary clusters dictate MPM inflammation and immune evasion. These results reveal potentially drugable evolutionary bottlenecking in MPM, and an impact of clonal architecture on shaping the immune landscape, with potential to dictate the clinical response to immune checkpoint inhibition.


Assuntos
Deleção Cromossômica , Neoplasias Pulmonares/genética , Mesotelioma/genética , Mutação , Neoplasias Pleurais/genética , Proteínas Supressoras de Tumor/genética , Células Clonais/metabolismo , Células Clonais/patologia , Análise por Conglomerados , Estudos de Coortes , Humanos , Estimativa de Kaplan-Meier , Prognóstico , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/classificação , Sequenciamento do Exoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA