Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(10): 1654-1670, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37667051

RESUMO

Glioblastoma (GBM) tumors consist of multiple cell populations, including self-renewing glioblastoma stem cells (GSCs) and immunosuppressive microglia. Here we identified Kunitz-type protease inhibitor TFPI2 as a critical factor connecting these cell populations and their associated GBM hallmarks of stemness and immunosuppression. TFPI2 promotes GSC self-renewal and tumor growth via activation of the c-Jun N-terminal kinase-signal transducer and activator of transcription (STAT)3 pathway. Secreted TFPI2 interacts with its functional receptor CD51 on microglia to trigger the infiltration and immunosuppressive polarization of microglia through activation of STAT6 signaling. Inhibition of the TFPI2-CD51-STAT6 signaling axis activates T cells and synergizes with anti-PD1 therapy in GBM mouse models. In human GBM, TFPI2 correlates positively with stemness, microglia abundance, immunosuppression and poor prognosis. Our study identifies a function for TFPI2 and supports therapeutic targeting of TFPI2 as an effective strategy for GBM.


Assuntos
Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/metabolismo , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Microambiente Tumoral , Transdução de Sinais , Proteínas de Transporte/metabolismo , Imunossupressores/farmacologia , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/metabolismo
2.
Mol Cell ; 81(6): 1276-1291.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33539787

RESUMO

Aberrant cell proliferation is a hallmark of cancer, including glioblastoma (GBM). Here we report that protein arginine methyltransferase (PRMT) 6 activity is required for the proliferation, stem-like properties, and tumorigenicity of glioblastoma stem cells (GSCs), a subpopulation in GBM critical for malignancy. We identified a casein kinase 2 (CK2)-PRMT6-regulator of chromatin condensation 1 (RCC1) signaling axis whose activity is an important contributor to the stem-like properties and tumor biology of GSCs. CK2 phosphorylates and stabilizes PRMT6 through deubiquitylation, which promotes PRMT6 methylation of RCC1, which in turn is required for RCC1 association with chromatin and activation of RAN. Disruption of this pathway results in defects in mitosis. EPZ020411, a specific small-molecule inhibitor for PRMT6, suppresses RCC1 arginine methylation and improves the cytotoxic activity of radiotherapy against GSC brain tumor xenografts. This study identifies a CK2α-PRMT6-RCC1 signaling axis that can be therapeutically targeted in the treatment of GBM.


Assuntos
Neoplasias Encefálicas , Carcinogênese , Proteínas de Ciclo Celular , Glioblastoma , Fatores de Troca do Nucleotídeo Guanina , Mitose/efeitos da radiação , Proteínas de Neoplasias , Proteínas Nucleares , Proteína-Arginina N-Metiltransferases , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/efeitos da radiação , Caseína Quinase II/genética , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Mitose/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Trends Immunol ; 42(4): 280-292, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663953

RESUMO

Glioblastoma (GBM) is a lethal form of primary brain tumor in human adults. The impact of tumor-intrinsic alterations is not exclusively confined to cancer cells but can also be extended to the tumor microenvironment (TME). Glioblastoma-associated macrophages/microglia (GAMs) are a prominent type of immune cells that account for up to 50% of total cells in GBM. Emerging evidence suggests that context-dependent GBM-GAM symbiotic interactions are pivotal for tumor growth and progression. Here, we discuss how specific genetic alterations in GBM cells affect GAM biology and, reciprocally, how GAMs support GBM progression. We hypothesize that understanding context-dependent GBM-GAM symbiosis may reveal the molecular basis of GBM tumorigenesis and lead to novel candidate treatment approaches aiming to improve GBM patient outcomes.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Macrófagos , Microglia , Simbiose , Microambiente Tumoral
4.
Proc Natl Acad Sci U S A ; 114(16): 4129-4134, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28373576

RESUMO

RNA interference (RNAi)-based gene regulation platforms have shown promise as a novel class of therapeutics for the precision treatment of cancer. Techniques in preclinical evaluation of RNAi-based nanoconjugates have yet to allow for optimization of their gene regulatory activity. We have developed spherical nucleic acids (SNAs) as a blood-brain barrier-/blood-tumor barrier-penetrating nanoconjugate to deliver small interfering (si) and micro (mi)RNAs to intracranial glioblastoma (GBM) tumor sites. To identify high-activity SNA conjugates and to determine optimal SNA treatment regimens, we developed a reporter xenograft model to evaluate SNA efficacy in vivo. Engrafted tumors stably coexpress optical reporters for luciferase and a near-infrared (NIR) fluorescent protein (iRFP670), with the latter fused to the DNA repair protein O6-methylguanine-DNA-methyltransferase (MGMT). Using noninvasive imaging of animal subjects bearing reporter-modified intracranial xenografts, we quantitatively assessed MGMT knockdown by SNAs composed of MGMT-targeting siRNA duplexes (siMGMT-SNAs). We show that systemic administration of siMGMT-SNAs via single tail vein injection is capable of robust intratumoral MGMT protein knockdown in vivo, with persistent and SNA dose-dependent MGMT silencing confirmed by Western blotting of tumor tissue ex vivo. Analyses of SNA biodistribution and pharmacokinetics revealed rapid intratumoral uptake and significant intratumoral retention that increased the antitumor activity of coadministered temozolomide (TMZ). Our study demonstrates that dual noninvasive bioluminescence and NIR fluorescence imaging of cancer xenograft models represents a powerful in vivo strategy to identify RNAi-based nanotherapeutics with potent gene silencing activity and will inform additional preclinical and clinical investigations of these constructs.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Metilases de Modificação do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/antagonistas & inibidores , Glioblastoma/tratamento farmacológico , Nanoconjugados/administração & dosagem , RNA Interferente Pequeno/genética , Proteínas Supressoras de Tumor/antagonistas & inibidores , Animais , Antineoplásicos Alquilantes/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Feminino , Fluorescência , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Camundongos SCID , Nanoconjugados/química , Interferência de RNA , Temozolomida , Células Tumorais Cultivadas , Proteínas Supressoras de Tumor/genética , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Neurooncol ; 141(1): 111-120, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30415456

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the most frequent and aggressive primary tumor of the central nervous system, accounting for over 50% of all primary malignant gliomas arising in the adult brain. Even after surgical resection, adjuvant radiotherapy (RT) and temozolomide (TMZ) chemotherapy, as well as tumor-treating fields, the median survival is only 15-20 months. We have identified a pathogenic mechanism that contributes to the tumor-induced immunosuppression in the form of increased indoleamine 2,3 dioxygenase 1 (IDO1) expression; an enzyme that metabolizes the essential amino acid, tryptophan (Trp), into kynurenine (Kyn). However, real-time measurements of IDO1 activity has yet to become mainstream in clinical protocols for assessing IDO1 activity in GBM patients. METHODS: Pre-treatment and on-treatment α-[11C]-methyl-L-Trp (AMT) positron emission tomography (PET) with co-registered MRI was performed on patients with recurrent GBM treated with the IDO1 pathway inhibitor indoximod (D1-MT) and TMZ. RESULTS: Regional intratumoral variability of AMT within enhancing and non-enhancing tumor was noted at baseline. On treatment imaging revealed decreased regional uptake suggesting IDO1 pathway modulation with treatment. CONCLUSIONS: Here, we have validated the ability to use PET of the Trp probe, AMT, for use in visualizing and quantifying intratumoral Trp uptake in GBM patients treated with an IDO1 pathway inhibitor. These data serve as rationale to utilize AMT-PET imaging in the future evaluation of GBM patients treated with IDO1 enzyme inhibitors.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Triptofano/análogos & derivados , Triptofano/metabolismo , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Triptofano/administração & dosagem
6.
Future Oncol ; 14(21): 2161-2177, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30084265

RESUMO

Meningiomas are the most common primary intracranial tumor. Important advances are occurring in meningioma research. These are expected to accelerate, potentially leading to impactful changes on the management of meningiomas in the near and medium term. This review will cover the histo- and molecular pathology of meningiomas, including recent 2016 updates to the WHO classification of CNS tumors. We will discuss clinical and radiographic presentation and therapeutic management. Surgery and radiotherapy, the two longstanding primary therapeutic modalities, will be discussed at length. In addition, data from prior and ongoing investigations of other treatment modalities, including systemic and targeted therapies, will be covered. This review will quickly update the reader on the contemporary management and future directions in meningiomas. [Formula: see text].


Assuntos
Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/terapia , Meningioma/diagnóstico , Meningioma/terapia , Animais , Biópsia , Terapia Combinada , Humanos , Neoplasias Meníngeas/epidemiologia , Neoplasias Meníngeas/etiologia , Meningioma/epidemiologia , Meningioma/etiologia , Imagem Multimodal/métodos , Estadiamento de Neoplasias , Prognóstico , Avaliação de Sintomas , Resultado do Tratamento
7.
Mol Cancer ; 16(1): 21, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137267

RESUMO

BACKGROUND: Pilocytic astrocytomas (PAs) are the most common pediatric central nervous system neoplasms. In the majority of cases these tumors are benign and receive favorable prognosis following gross total surgical resection. In patients with progressive or symptomatic tumors, aggressive surgical resection is generally not feasible, thus radiation or chemotherapy are accepted initial or adjuvant interventions. Due to serious long-lasting side-effects, radiation is limited in young children; therefore, chemotherapy is widely practiced as an adjuvant treatment for these patients. However, chemotherapy can promote the emergence of multidrug resistant tumor cells that are more malignant than those of the original tumor. CD133, a putative stem cell marker in normal tissue and malignant brain tumors, enhances multidrug resistant gene 1 (MDR1) expression following chemotherapy in adult malignant glioblastomas. This study examines the relationship between CD133 and MDR1 in pediatric PAs exposed to chemotherapy, with the goal of identifying therapeutic targets that manifest as a result of chemotherapy. METHODS: Slides were obtained for 15 recurrent PAs, seven of which had received chemotherapy prior to surgical treatment for the recurrent tumor. These samples, as well as primary tumor tissue slides from the same patients were used to investigate CD133 and MDR1 expression via immunofluorescence. Archived frozen tissue samples from the same patients were used to examine CD133, MDR1 and PI3K-Akt-NF-κB signaling mediators, via western blot. Two drug resistant pediatric PA cell lines Res186 and Res199 were also used to evaluate the role of CD133 on cell response to cytotoxic therapy. RESULTS: CD133 and MDR1 were co-expressed and their expression was elevated in recurrent PAs from patients that had received chemotherapy, compared to patients that had not received chemotherapy. PI3K-Akt-NF-κB signaling mediator expression was also elevated in recurrent, chemotherapy-treated PA. Suppressing CD133 expression with siCD133 decreased levels of PI3K-Akt-NF-κB signaling mediators and MDR1, while increasing cell chemosensitivity, as indicated by quantification of apoptotic cells following chemotherapy. CONCLUSIONS: CD133 contributes to multidrug resistance by regulating MDR1 levels via the PI3K-Akt-NF-κB signal pathway not only in adult glioblastomas, but also in pediatric PAs. Targeting CD133, adjuvant to conventional chemotherapy may improve outcomes for children with recurrent PA.


Assuntos
Antígeno AC133/metabolismo , Astrocitoma/metabolismo , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia/metabolismo , Regulação para Cima , Antígeno AC133/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adolescente , Astrocitoma/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimioterapia Adjuvante , Criança , Pré-Escolar , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Lactente , Masculino , NF-kappa B/genética , Terapia Neoadjuvante , Recidiva Local de Neoplasia/tratamento farmacológico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
8.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38941297

RESUMO

STING agonists can reprogram the tumor microenvironment to induce immunological clearance within the central nervous system. Using multiplexed sequential immunofluorescence (SeqIF) and the Ivy Glioblastoma Atlas, STING expression was found in myeloid populations and in the perivascular space. The STING agonist 8803 increased median survival in multiple preclinical models of glioblastoma, including QPP8, an immune checkpoint blockade-resistant model, where 100% of mice were cured. Ex vivo flow cytometry profiling during the therapeutic window demonstrated increases in myeloid tumor trafficking and activation, alongside enhancement of CD8+ T cell and NK effector responses. Treatment with 8803 reprogrammed microglia to express costimulatory CD80/CD86 and iNOS, while decreasing immunosuppressive CD206 and arginase. In humanized mice, where tumor cell STING is epigenetically silenced, 8803 therapeutic activity was maintained, further attesting to myeloid dependency and reprogramming. Although the combination with a STAT3 inhibitor did not further enhance STING agonist activity, the addition of anti-PD-1 antibodies to 8803 treatment enhanced survival in an immune checkpoint blockade-responsive glioma model. In summary, 8803 as a monotherapy demonstrates marked in vivo therapeutic activity, meriting consideration for clinical translation.


Assuntos
Glioblastoma , Proteínas de Membrana , Microambiente Tumoral , Animais , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Microambiente Tumoral/imunologia , Camundongos , Proteínas de Membrana/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/agonistas , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética
9.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444539

RESUMO

Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity. Here, we show that H3K4me3 and its methyltransferase WDR82 are elevated in pHGGs. A reduction in H3K4me3 by downregulating WDR82 decreases H3K4me3 promoter occupancy and the expression of genes associated with stem cell features, cell proliferation, the cell cycle, and DNA damage repair. A reduction in WDR82-mediated H3K4me3 increases the response of pediatric glioma cells to chemotherapy. These findings suggest that WDR82-mediated H3K4me3 is an important determinant of pediatric glioma malignancy and therapeutic response. This highlights the need for a more thorough understanding of the potential of WDR82 as an epigenetic target to increase therapeutic efficacy and improve the prognosis for children with malignant gliomas.

10.
Oncoimmunology ; 11(1): 2062827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433114

RESUMO

Osteopontin (OPN) is produced by tumor cells as well as by myeloid cells and is enriched in the tumor microenvironment (TME) of many cancers. Given the roles of OPN in tumor progression and immune suppression, we hypothesized that targeting OPN with aptamers that have high affinity and specificity could be a promising therapeutic strategy. Bi-specific aptamers targeting ligands for cellular internalization were conjugated to siRNAs to suppress OPN were created, and therapeutic leads were selected based on target engagement and in vivo activity. Aptamers as carriers for siRNA approaches were created including a cancer targeting nucleolin aptamer Ncl-OPN siRNA and a myeloid targeting CpG oligodeoxynucleotide (ODN)-OPN siRNA conjugate. These aptamers were selected as therapeutic leads based on 70-90% OPN inhibition in cancer (GL261, 344SQ, 4T1B2b) and myeloid (DC2.4) cells relative to scramble controls. In established immune competent 344SQ lung cancer and 4T1B2b breast cancer models, these aptamers, including in combination, demonstrate therapeutic activity by inhibiting tumor growth. The Ncl-OPN siRNA aptamer demonstrated efficacy in an immune competent orthotopic glioma model administered systemically secondary to the ability of the aptamer to access the glioma TME. Therapeutic activity was demonstrated using both aptamers in a breast cancer brain metastasis model. Targeted inhibition of OPN in tumor cells and myeloid cells using bifunctional aptamers that are internalized by specific cell types and suppress OPN expression once internalized may have clinical potential in cancer treatment.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias da Mama , Glioma , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Aptâmeros de Nucleotídeos/uso terapêutico , Sistema Nervoso Central/metabolismo , Feminino , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , Microambiente Tumoral
11.
Front Immunol ; 13: 907605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784281

RESUMO

The glioma tumor microenvironment (TME) is complex and heterogeneous, and multiple emerging and current technologies are being utilized for an improved comprehension and understanding of these tumors. Single cell analysis techniques such as single cell genomic and transcriptomic sequencing analysis are on the rise and play an important role in elucidating the glioma TME. These large datasets will prove useful for patient tumor characterization, including immune configuration that will ultimately influence therapeutic choices and especially immune therapies. In this review we discuss the advantages and drawbacks of these techniques while debating their role in the domain of glioma-infiltrating myeloid cells characterization and function.


Assuntos
Glioblastoma , Glioma , Glioblastoma/genética , Glioblastoma/patologia , Glioblastoma/terapia , Humanos , Células Mieloides , Células Progenitoras Mieloides , Microambiente Tumoral/genética
12.
F1000Res ; 11: 1010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36324813

RESUMO

Median survival of patients with glioblastoma (GBM) treated with standard of care which consists of maximal safe resection of the contrast-enhancing portion of the tumor followed by radiation therapy with concomitant adjuvant temozolomide (TMZ) remains 15 months. The tumor microenvironment (TME) is known to contain immune suppressive myeloid cells with minimal effector T cell infiltration. Stimulator of interferon genes (STING) is an important activator of immune response and results in production of Type 1 interferon and antigen presentation by myeloid cells. This review will discuss important developments in STING agonists, potential biomarkers for STING response, and new combinatorial therapeutic approaches in gliomas.


Assuntos
Glioma , Proteínas de Membrana , Humanos , Glioma/tratamento farmacológico , Interferons , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Microambiente Tumoral
13.
Cancers (Basel) ; 14(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36428586

RESUMO

Adult-type diffusely infiltrating gliomas, of which glioblastoma is the most common and aggressive, almost always recur after treatment and are fatal. Improved understanding of therapy-driven tumor evolution and acquired therapy resistance in gliomas is essential for improving patient outcomes, yet the majority of the models currently used in preclinical research are of therapy-naïve tumors. Here, we describe the development of therapy-resistant IDH-wildtype glioblastoma patient-derived xenografts (PDX) through orthotopic engraftment of therapy naïve PDX in athymic nude mice, and repeated in vivo exposure to the therapeutic modalities most often used in treating glioblastoma patients: radiotherapy and temozolomide chemotherapy. Post-temozolomide PDX became enriched for C>T transition mutations, acquired inactivating mutations in DNA mismatch repair genes (especially MSH6), and developed hypermutation. Such post-temozolomide PDX were resistant to additional temozolomide (median survival decrease from 80 days in parental PDX to 42 days in a temozolomide-resistant derivative). However, temozolomide-resistant PDX were sensitive to lomustine (also known as CCNU), a nitrosourea which induces tumor cell apoptosis by a different mechanism than temozolomide. These PDX models mimic changes observed in recurrent GBM in patients, including critical features of therapy-driven tumor evolution. These models can therefore serve as valuable tools for improving our understanding and treatment of recurrent glioma.

14.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35316217

RESUMO

BACKGROUNDImmune cell profiling of primary and metastatic CNS tumors has been focused on the tumor, not the tumor microenvironment (TME), or has been analyzed via biopsies.METHODSEn bloc resections of gliomas (n = 10) and lung metastases (n = 10) were analyzed via tissue segmentation and high-dimension Opal 7-color multiplex imaging. Single-cell RNA analyses were used to infer immune cell functionality.RESULTSWithin gliomas, T cells were localized in the infiltrating edge and perivascular space of tumors, while residing mostly in the stroma of metastatic tumors. CD163+ macrophages were evident throughout the TME of metastatic tumors, whereas in gliomas, CD68+, CD11c+CD68+, and CD11c+CD68+CD163+ cell subtypes were commonly observed. In lung metastases, T cells interacted with CD163+ macrophages as dyads and clusters at the brain-tumor interface and within the tumor itself and as clusters within the necrotic core. In contrast, gliomas typically lacked dyad and cluster interactions, except for T cell CD68+ cell dyads within the tumor. Analysis of transcriptomic data in glioblastomas revealed that innate immune cells expressed both proinflammatory and immunosuppressive gene signatures.CONCLUSIONOur results show that immunosuppressive macrophages are abundant within the TME and that the immune cell interactome between cancer lineages is distinct. Further, these data provide information for evaluating the role of different immune cell populations in brain tumor growth and therapeutic responses.FUNDINGThis study was supported by the NIH (NS120547), a Developmental research project award (P50CA221747), ReMission Alliance, institutional funding from Northwestern University and the Lurie Comprehensive Cancer Center, and gifts from the Mosky family and Perry McKay. Performed in the Flow Cytometry & Cellular Imaging Core Facility at MD Anderson Cancer Center, this study received support in part from the NIH (CA016672) and the National Cancer Institute (NCI) Research Specialist award 1 (R50 CA243707). Additional support was provided by CCSG Bioinformatics Shared Resource 5 (P30 CA046592), a gift from Agilent Technologies, a Research Scholar Grant from the American Cancer Society (RSG-16-005-01), a Precision Health Investigator Award from University of Michigan (U-M) Precision Health, the NCI (R37-CA214955), startup institutional research funds from U-M, and a Biomedical Informatics & Data Science Training Grant (T32GM141746).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Pulmonares , Neoplasias Encefálicas/patologia , Sistema Nervoso Central/metabolismo , Glioblastoma/patologia , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/metabolismo , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Estados Unidos
15.
J Med Chem ; 65(23): 15642-15662, 2022 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-36410047

RESUMO

Indoleamine 2,3-dioxygenase 1 (IDO1) is a potent immunosuppressive enzyme that inhibits the antitumor immune response through both tryptophan metabolism and non-enzymatic functions. To date, most IDO1-targeted approaches have focused on inhibiting tryptophan metabolism. However, this class of drugs has failed to improve the overall survival of patients with cancer. Here, we developed and characterized proteolysis targeting chimeras (PROTACs) that degrade the IDO1 protein. IDO1-PROTACs were tested for their effects on IDO1 enzyme and non-enzyme activities. After screening a library of IDO1-PROTAC derivatives, a compound was identified that potently degraded the IDO1 protein through cereblon-mediated proteasomal degradation. The IDO1-PROTAC: (i) inhibited IDO1 enzyme activity and IDO1-mediated NF-κB phosphorylation in cultured human glioblastoma (GBM) cells, (ii) degraded the IDO1 protein within intracranial brain tumors in vivo, and (iii) mediated a survival benefit in mice with well-established brain tumors. This study identified and characterized a new IDO1 protein degrader with therapeutic potential for patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Animais , Camundongos , Triptofano , Quimera de Direcionamento de Proteólise , Neoplasias Encefálicas/tratamento farmacológico
16.
Trends Cell Biol ; 31(11): 940-950, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34272133

RESUMO

Circadian rhythms regulate a remarkable variety of physiologic functions in living organisms. Circadian disruption is associated with tumorigenesis and tumor progression through effects on cancer cell biological properties, including proliferation, DNA repair, apoptosis, metabolism, and stemness. Emerging evidence indicates that circadian clocks also play an influential role in the tumor microenvironment (TME). This review outlines recent discoveries on how cancer cell clock components (including circadian clock and clock genes/proteins) regulate TME biology and, reciprocally, how TME clock components affect tumor growth, metastasis, and therapeutic response. An improved understanding of how clock components regulate the symbiosis between cancer cells and the TME will inform the development of novel clock-oriented therapeutic strategies, including immunotherapy.


Assuntos
Relógios Circadianos , Microambiente Tumoral , Proteínas CLOCK , Carcinogênese/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Humanos
17.
Neurooncol Adv ; 3(1): vdab125, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34647022

RESUMO

BACKGROUND: Advanced age is a major risk factor for the development of many diseases including those affecting the central nervous system. Wild-type isocitrate dehydrogenase glioblastoma (IDHwt GBM) is the most common primary malignant brain cancer and accounts for ≥90% of all adult GBM diagnoses. Patients with IDHwt GBM have a median age of diagnosis at 68-70 years of age, and increasing age is associated with an increasingly worse prognosis for patients with this type of GBM. METHODS: The Surveillance, Epidemiology, and End Results, The Cancer Genome Atlas, and the Chinese Glioma Genome Atlas databases were analyzed for mortality indices. Meta-analysis of 80 clinical trials was evaluated for log hazard ratio for aging to tumor survivorship. RESULTS: Despite significant advances in the understanding of intratumoral genetic alterations, molecular characteristics of tumor microenvironments, and relationships between tumor molecular characteristics and the use of targeted therapeutics, life expectancy for older adults with GBM has yet to improve. CONCLUSIONS: Based upon the results of our analysis, we propose that age-dependent factors that are yet to be fully elucidated, contribute to IDHwt GBM patient outcomes.

18.
Cancers (Basel) ; 12(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102285

RESUMO

Malignant gliomas are heterogeneous neoplasms. Glioma stem-like cells (GSCs) are undifferentiated and self-renewing cells that develop and maintain these tumors. These cells are the main population that resist current therapies. Genomic and epigenomic analyses has identified various molecular subtypes. Bone morphogenetic protein 4 (BMP4) reduces the number of GSCs through differentiation and induction of apoptosis, thus increasing therapeutic sensitivity. However, the short half-life of BMP4 impedes its clinical application. We previously reviewed BMP4 signaling in central nervous system development and glioma tumorigenesis and its potential as a treatment target in human gliomas. Recent advances in understanding both adult and pediatric malignant gliomas highlight critical roles of BMP4 signaling pathways in the regulation of tumor biology, and indicates its potential as a therapeutic molecule. Furthermore, significant progress has been made on synthesizing BMP4 biocompatible delivery materials, which can bind to and markedly extend BMP4 half-life. Here, we review current research associated with BMP4 in brain tumors, with an emphasis on pediatric malignant gliomas. We also summarize BMP4 delivery strategies, highlighting biocompatible BMP4 binding peptide amphiphile nanostructures as promising novel delivery platforms for treatment of these devastating tumors.

19.
Neuro Oncol ; 22(9): 1315-1326, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32055849

RESUMO

BACKGROUND: Lymphocyte antigen 6 complex, locus K (LY6K) is a putative oncogene in various cancers. Elevated expression of LY6K is correlated with poor patient prognosis in glioblastoma (GBM). The aim of this study is to advance our understanding of the mechanism by which LY6K contributes to GBM tumor biology. METHODS: Bioinformatic data mining was used to investigate LY6K expression in relation to GBM clinical outcome. To understand the role of LY6K in GBM, we utilized patient-derived glioma stemlike cells (GSCs) and U87 cells and employed immunoblotting, immunofluorescent staining, radiation treatment, and orthotopic GBM xenograft models. RESULTS: Our results show that increased expression of LY6K inversely correlates with GBM patient survival. LY6K promotes tumorigenicity in GBM cells both in vitro and in vivo. The mechanism underlying this tumorigenic behavior is enhancement of extracellular signal-regulated kinase 1 and 2 (ERK1/2) signaling. Interestingly, we observed that tumor-promoting LY6K-ERK1/2 signaling is mediated by the interaction of LY6K with caveolin-1, rather than through oncogenic receptor tyrosine kinase-mediated signaling. Moreover, association of LY6K with the cell membrane is crucial for its tumorigenic functions. Finally, DNA methylation maintains LY6K silencing, and hypomethylation of the LY6K promoter increases its expression. In GSCs, ionizing radiation leads to demethylation of the LY6K promoter, thereby increasing LY6K expression and GSC resistance to radiation. CONCLUSIONS: Our study highlights the importance of the contribution of LY6K to GBM tumor biology and suggests LY6K as a potential membrane target for treating GBM.


Assuntos
Antígenos Ly/genética , Neoplasias Encefálicas , Glioblastoma , Glioma , Neoplasias Encefálicas/genética , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Proteínas Ligadas por GPI , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioma/genética , Humanos , Proteína Quinase 3 Ativada por Mitógeno , Células-Tronco Neoplásicas , Transdução de Sinais
20.
Neuro Oncol ; 21(Suppl 1): i4-i17, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-30649490

RESUMO

Meningiomas are the most common primary intracranial neoplasm. The current World Health Organization (WHO) classification categorizes meningiomas based on histopathological features, but emerging molecular data demonstrate the importance of genomic and epigenomic factors in the clinical behavior of these tumors. Treatment options for symptomatic meningiomas are limited to surgical resection where possible and adjuvant radiation therapy for tumors with concerning histopathological features or recurrent disease. At present, alternative adjuvant treatment options are not available in part due to limited historical biological analysis and clinical trial investigation on meningiomas. With advances in molecular and genomic techniques in the last decade, we have witnessed a surge of interest in understanding the genomic and epigenomic landscape of meningiomas. The field is now at the stage to adopt this molecular knowledge to refine meningioma classification and introduce molecular algorithms that can guide prediction and therapeutics for this tumor type. Animal models that recapitulate meningiomas faithfully are in critical need to test new therapeutics to facilitate rapid-cycle translation to clinical trials. Here we review the most up-to-date knowledge of molecular alterations that provide insight into meningioma behavior and are ready for application to clinical trial investigation, and highlight the landscape of available preclinical models in meningiomas.


Assuntos
Neoplasias Meníngeas/terapia , Meningioma/terapia , Terapia de Alvo Molecular , Pesquisa Translacional Biomédica , Terapia Combinada , Genômica , Humanos , Neoplasias Meníngeas/diagnóstico , Meningioma/diagnóstico , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA