Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 377(2147): 20180422, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31030650

RESUMO

Structure-guided drug discovery emerged in the 1970s and 1980s, stimulated by the three-dimensional structures of protein targets that became available, mainly through X-ray crystal structure analysis, assisted by the development of synchrotron radiation sources. Structures of known drugs or inhibitors were used to guide the development of leads. The growth of high-throughput screening during the late 1980s and the early 1990s in the pharmaceutical industry of chemical libraries of hundreds of thousands of compounds of molecular weight of approximately 500 Da was impressive but still explored only a tiny fraction of the chemical space of the predicted 1040 drug-like compounds. The use of fragments with molecular weights less than 300 Da in drug discovery not only decreased the chemical space needing exploration but also increased promiscuity in binding targets. Here we discuss advances in X-ray fragment screening and the challenge of identifying sites where fragments not only bind but can be chemically elaborated while retaining their positions and binding modes. We first describe the analysis of fragment binding using conventional X-ray difference Fourier techniques, with Mycobacterium abscessus SAICAR synthetase (PurC) as an example. We observe that all fragments occupy positions predicted by computational hotspot mapping. We compare this with fragment screening at Diamond Synchrotron Light Source XChem facility using PanDDA software, which identifies many more fragment hits, only some of which bind to the predicted hotspots. Many low occupancy sites identified may not support elaboration to give adequate ligand affinity, although they will likely be useful in drug discovery as 'warm spots' for guiding elaboration of fragments bound at hotspots. We discuss implications of these observations for fragment screening at the synchrotron sources. This article is part of the theme issue 'Fifty years of synchrotron science: achievements and opportunities'.


Assuntos
Descoberta de Drogas/história , Síncrotrons/história , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Ensaios de Triagem em Larga Escala/história , Ensaios de Triagem em Larga Escala/métodos , Ensaios de Triagem em Larga Escala/tendências , História do Século XX , História do Século XXI , Humanos , Modelos Moleculares , Mycobacterium abscessus/efeitos dos fármacos , Mycobacterium abscessus/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo
2.
Nat Microbiol ; 5(12): 1553-1564, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32929189

RESUMO

The bacterial flagellum is the prototypical protein nanomachine and comprises a rotating helical propeller attached to a membrane-embedded motor complex. The motor consists of a central rotor surrounded by stator units that couple ion flow across the cytoplasmic membrane to generate torque. Here, we present the structures of the stator complexes from Clostridium sporogenes, Bacillus subtilis and Vibrio mimicus, allowing interpretation of the extensive body of data on stator mechanism. The structures reveal an unexpected asymmetric A5B2 subunit assembly where the five A subunits enclose the two B subunits. Comparison to structures of other ion-driven motors indicates that this A5B2 architecture is fundamental to bacterial systems that couple energy from ion flow to generate mechanical work at a distance and suggests that such events involve rotation in the motor structures.


Assuntos
Bacillus subtilis/química , Clostridium/química , Flagelos/química , Vibrio mimicus/química , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/genética , Clostridium/metabolismo , Flagelos/genética , Flagelos/metabolismo , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Rotação , Vibrio mimicus/genética , Vibrio mimicus/metabolismo
3.
Nat Microbiol ; 5(12): 1616, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33168990

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA