Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 19(9): 1279-94, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23898217

RESUMO

Pseudouridines (Ψ) are found in structurally and functionally important regions of RNAs. Six families of Ψ synthases, TruA, TruB, TruD, RsuA, RluA, and Pus10 have been identified. Pus10 is present in Archaea and Eukarya. While most archaeal Pus10 produce both tRNA Ψ54 and Ψ55, some produce only Ψ55. Interestingly, human PUS10 has been implicated in apoptosis and Crohn's and Celiac diseases. Homology models of archaeal Pus10 proteins based on the crystal structure of human PUS10 reveal that there are subtle structural differences in all of these Pus10 proteins. These observations suggest that structural changes in homologous proteins may lead to loss, gain, or change of their functions, warranting the need to study the structure-function relationship of these proteins. Using comparison of structural models and a series of mutations, we identified forefinger loop (reminiscent of that of RluA) and an Arg and a Tyr residue of archaeal Pus10 as critical determinants for its Ψ54, but not for its Ψ55 activity. We also found that a Leu residue, in addition to the catalytic Asp, is essential for both activities. Since forefinger loop is needed for both rRNA and tRNA Ψ synthase activities of RluA, but only for tRNA Ψ54 activity of Pus10, archaeal Pus10 proteins must use a different mechanism of recognition for Ψ55 activity. We propose that archaeal Pus10 uses two distinct mechanisms for substrate uridine recognition and binding. However, since we did not observe any mutation that affected only Ψ55 activity, both mechanisms for archaeal Pus10 activities must share some common features.


Assuntos
Archaea/genética , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Transferases Intramoleculares/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Pareamento de Bases , Transferases Intramoleculares/química , Transferases Intramoleculares/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Conformação Proteica , Pseudouridina/genética , Pseudouridina/metabolismo , RNA Ribossômico/metabolismo , RNA de Transferência/genética
2.
Nat Genet ; 56(3): 371-376, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38424461

RESUMO

Available genetically defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Here, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.


Assuntos
Neoplasias , Masculino , Humanos , Genótipo , Fenótipo , Neoplasias/genética , Estudos de Associação Genética
3.
RNA ; 17(7): 1367-80, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21628430

RESUMO

Pseudouridine (Ψ), the isomer of uridine, is commonly found at various positions of noncoding RNAs of all organisms. Ψ residues are formed by a number of single- or multisite specific Ψ synthases, which generally act as stand-alone proteins. In addition, in Eukarya and Archaea, specific ribonucleoprotein complexes, each containing a distinct box H/ACA guide RNA and four core proteins, can produce Ψ at many sites of different cellular RNAs. Cbf5 is the core Ψ synthase in these complexes. Using Haloferax volcanii as an archaeal model organism, we show that, contrary to eukaryotes, the Cbf5 homolog (HVO_2493) is not essential in this archaeon. The Cbf5-deleted strain of H. volcanii completely lacks Ψ at positions 1940, 1942, 2605, and 2591 (Escherichia coli positions 1915, 1917, 2572, and 2586) of its 23S rRNA, and contains reduced steady-state levels of some box H/ACA RNAs. Archaeal Cbf5 is known to have tRNA Ψ55 synthase activity in vitro but we could not confirm this activity in vivo in H. volcanii. Conversely, the Pus10 (previously PsuX) homolog (HVO_1979), which can produce tRNA Ψ55, as well as Ψ54 in vitro, is shown here to be essential in H. volcanii, whereas the corresponding tRNA Ψ55 synthases, Pus4 and TruB, are not essential in yeast and E. coli, respectively. Finally, we demonstrate that HVO_1852, the TruA/Pus3 homolog, is responsible for the pseudouridylation of position 39 in H. volcanii tRNAs and that the corresponding gene is not essential.


Assuntos
Haloferax volcanii/genética , Haloferax volcanii/metabolismo , Pseudouridina/metabolismo , RNA Arqueal/metabolismo , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Sequência de Bases , Deleção de Genes , Hidroliases/genética , Hidroliases/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo
4.
bioRxiv ; 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37609344

RESUMO

Available genetically-defined cancer models are limited in genotypic and phenotypic complexity and underrepresent the heterogeneity of human cancer. Herein, we describe a combinatorial genetic strategy applied to an organoid transformation assay to rapidly generate diverse, clinically relevant bladder and prostate cancer models. Importantly, the clonal architecture of the resultant tumors can be resolved using single-cell or spatially resolved next-generation sequencing to uncover polygenic drivers of cancer phenotypes.

5.
Cancer Cell ; 41(5): 853-870.e13, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084735

RESUMO

We uncover a tumor-suppressive process in urothelium called transcriptional-translational conflict caused by deregulation of the central chromatin remodeling component ARID1A. Loss of Arid1a triggers an increase in a nexus of pro-proliferation transcripts, but a simultaneous inhibition of the eukaryotic elongation factor 2 (eEF2), which results in tumor suppression. Resolution of this conflict through enhancing translation elongation speed enables the efficient and precise synthesis of a network of poised mRNAs resulting in uncontrolled proliferation, clonogenic growth, and bladder cancer progression. We observe a similar phenomenon in patients with ARID1A-low tumors, which also exhibit increased translation elongation activity through eEF2. These findings have important clinical implications because ARID1A-deficient, but not ARID1A-proficient, tumors are sensitive to pharmacologic inhibition of protein synthesis. These discoveries reveal an oncogenic stress created by transcriptional-translational conflict and provide a unified gene expression model that unveils the importance of the crosstalk between transcription and translation in promoting cancer.


Assuntos
Cromatina , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética
6.
JCI Insight ; 6(11)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34032633

RESUMO

Using genetically engineered mouse models, this work demonstrates that protein synthesis is essential for efficient urothelial cancer formation and growth but dispensable for bladder homeostasis. Through a candidate gene analysis for translation regulators implicated in this dependency, we discovered that phosphorylation of the translation initiation factor eIF4E at serine 209 is increased in both murine and human bladder cancer, and this phosphorylation corresponds with an increase in de novo protein synthesis. Employing an eIF4E serine 209 to alanine knock-in mutant mouse model, we show that this single posttranslational modification is critical for bladder cancer initiation and progression, despite having no impact on normal bladder tissue maintenance. Using murine and human models of advanced bladder cancer, we demonstrate that only tumors with high levels of eIF4E phosphorylation are therapeutically vulnerable to eFT508, the first clinical-grade inhibitor of MNK1 and MNK2, the upstream kinases of eIF4E. Our results show that phospho-eIF4E plays an important role in bladder cancer pathogenesis, and targeting its upstream kinases could be an effective therapeutic option for bladder cancer patients with high levels of eIF4E phosphorylation.


Assuntos
Carcinoma de Células de Transição/genética , Transformação Celular Neoplásica/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Biossíntese de Proteínas/genética , RNA Mensageiro/metabolismo , Neoplasias da Bexiga Urinária/genética , Urotélio/metabolismo , Animais , Butilidroxibutilnitrosamina/toxicidade , Carcinoma de Células de Transição/induzido quimicamente , Carcinoma de Células de Transição/metabolismo , Transformação Celular Neoplásica/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Técnicas de Introdução de Genes , Homeostase , Humanos , Camundongos , Transplante de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteínas Ribossômicas/genética , Neoplasias da Bexiga Urinária/induzido quimicamente , Neoplasias da Bexiga Urinária/metabolismo
7.
JCI Insight ; 52019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31145100

RESUMO

BACKGROUND: Little is known about the genomic differences between metastatic urothelial carcinoma (LTUC) and upper tract urothelial carcinoma (UTUC). We compare genomic features of primary and metastatic UTUC and LTUC tumors in a cohort of patients with end stage disease. METHODS: We performed whole exome sequencing on matched primary and metastatic tumor samples (N=37) from 7 patients with metastatic UC collected via rapid autopsy. Inter- and intra-patient mutational burden, mutational signatures, predicted deleterious mutations, and somatic copy alterations (sCNV) were analyzed. RESULTS: We investigated 3 patients with UTUC (3 primary samples, 13 metastases) and 4 patients with LTUC (4 primary samples, 17 metastases). We found that sSNV burden was higher in metastatic LTUC compared to UTUC. Moreover, the APOBEC mutational signature was pervasive in metastatic LTUC and less so in UTUC. Despite a lower overall sSNV burden, UTUC displayed greater inter- and intra-individual genomic distances at the copy number level between primary and metastatic tumors than LTUC. Our data also indicate that metastatic UTUC lesions can arise from small clonal populations present in the primary cancer. Importantly, putative druggable mutations were found across patients with the majority shared across all metastases within a patient. CONCLUSIONS: Metastatic UTUC demonstrated a lower overall mutational burden but greater structural variability compared to LTUC. Our findings suggest that metastatic UTUC displays a greater spectrum of copy number divergence from LTUC. Importantly, we identified druggable lesions shared across metastatic samples, which demonstrate a level of targetable homogeneity within individual patients.


Assuntos
Carcinoma de Células de Transição/genética , Genômica , Neoplasias Urológicas/genética , Idoso , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Análise de Sequência , Sequenciamento do Exoma
8.
Sci Transl Med ; 11(503)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366581

RESUMO

The androgen receptor (AR) is a driver of cellular differentiation and prostate cancer development. An extensive body of work has linked these normal and aberrant cellular processes to mRNA transcription; however, the extent to which AR regulates posttranscriptional gene regulation remains unknown. Here, we demonstrate that AR uses the translation machinery to shape the cellular proteome. We show that AR is a negative regulator of protein synthesis and identify an unexpected relationship between AR and the process of translation initiation in vivo. This is mediated through direct transcriptional control of the translation inhibitor 4EBP1. We demonstrate that lowering AR abundance increases the assembly of the eIF4F translation initiation complex, which drives enhanced tumor cell proliferation. Furthermore, we uncover a network of pro-proliferation mRNAs characterized by a guanine-rich cis-regulatory element that is particularly sensitive to eIF4F hyperactivity. Using both genetic and pharmacologic methods, we demonstrate that dissociation of the eIF4F complex reverses the proliferation program, resulting in decreased tumor growth and improved survival in preclinical models. Our findings reveal a druggable nexus that functionally links the processes of mRNA transcription and translation initiation in an emerging class of lethal AR-deficient prostate cancer.


Assuntos
Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Regulon/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/genética , Proliferação de Células/fisiologia , Humanos , Técnicas In Vitro , Íntrons/genética , Masculino , Camundongos , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Regulon/genética
9.
Cell Death Dis ; 8(10): e3093, 2017 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-28981101

RESUMO

Pus10 is a pseudouridine synthase present in Archaea and Eukarya, but not in Bacteria and yeast. It has been suggested that the human PUS10 (DOBI) gene is needed during TRAIL-induced apoptosis. We analyzed the role of PUS10 in TRAIL-induced apoptosis by immunofluorescence, immunoblotting and several indicators of apoptosis. We examined several TRAIL-sensitive cell lines and we also examined some resistant cell lines after treatment with cycloheximide. PUS10 is mainly present in the nucleus. Early during apoptosis, PUS10 translocates to mitochondria via CRM1-mediated export with the concurrent release of cytochrome c and SMAC. Caspase-3 is required for PUS10 translocation, which reciprocally amplifies the activity of caspase-3 through the intrinsic/mitochondrial pathway. This suggests that in addition to cytoplasmic factors, nuclear factors also have a direct role in the major apoptosis pathways. However, p53 is not involved in TRAIL-induced PUS10 movement. The caspase-3-mediated movement of PUS10 and the release of mitochondrial contents enhancing caspase-3 activity creates a feedback amplification loop for caspase-3 action. Therefore, any defect in the movement or interactions of PUS10 would reduce the TRAIL sensitivity of tumor cells.


Assuntos
Caspase 3/genética , Hidroliases/genética , Mitocôndrias/genética , Neoplasias/genética , Transporte Ativo do Núcleo Celular/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Citosol/metabolismo , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Neoplasias/metabolismo , Neoplasias/patologia , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Ligante Indutor de Apoptose Relacionado a TNF/genética , Proteína Supressora de Tumor p53/genética
10.
Malays J Nutr ; 13(2): 131-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22691751

RESUMO

The nutritional status of tuberculosis patients (TBP) and controls (CT) was compared among adult (> 20 years) Bengalees in Shyamnagar, Barrackpore, Naihati and Jagaddal of North 24 Parganas District, West Bengal, India. The subjects included 310 men (154 TBP and 156 CT) and 246 women (128 TBP and 118 CT). The mean ages of TBP men was 36.4 years (CT = 34.5) and that of TBP women was 26.4 years (CT = 25.6). Variables compared included weight, height, fat mass, fat mass index, mid-upper arm fat area, and skinfolds. Results revealed that TBP had significantly lower means for all variables (except for height in men) compared to CT in both sexes. In men, the highest percent differences between the two groups were observed for fat mass (FM: 60.1%), fat mass index (FMI: 59.2%) and suprailiac skinfold (SUPSF: 58.8%). In women, the highest percent differences between the two groups were observed for SUPSF (59.7), mid-upper arm fat area (MUAFA: 58.1), triceps skinfold (TSF: 51.4), biceps skinfold (BSF: 51.2), FM (51.2) and FMI (49.0). Regression analyses confirmed that tuberculosis status had significant impact (p < 0.0001) on all anthropometric and body composition characteristics compared (except for height in men) in both sexes. Among men, tuberculosis status explained the highest percent variation in percent body fat (PBF: 57.2%), FMI (56.0%) and FM (55.6%). In women, tuberculosis status explained the highest amount of variation in PBF (67.9), TSF (63.5%), BSF (62.8), FMI (61.0) and FM(60.7). Results of contingency chi-square tests revealed that there were significant differences in the frequency of undernutrition between TBP and CT in men (χ2 = 73.13361) and women (χ2 = 59.0000). The frequencies of undernutrition were significantly more common among TBP, in both men (56.5%) as well as women (51.6%). This study provided evidence that there was significant differential amount of loss in fat and muscle measures in tuberculosis patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA