Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338873

RESUMO

State-of-the-art Li batteries suffer from serious safety hazards caused by the reactivity of lithium and the flammable nature of liquid electrolytes. This work develops highly efficient solid-state electrolytes consisting of imidazolium-containing polyionic liquids (PILs) and lithium bis(trifluoromethane sulfonyl)imide (LiTFSI). By employing PIL/LiTFSI electrolyte membranes blended with poly(propylene carbonate) (PPC), we addressed the problem of combining ionic conductivity and mechanical properties in one material. It was found that PPC acts as a mechanically reinforcing component that does not reduce but even enhances the ionic conductivity. While pure PILs are liquids, the tricomponent PPC/PIL/LiTFSI blends are rubber-like materials with a Young's modulus in the range of 100 MPa. The high mechanical strength of the material enables fabrication of mechanically robust free-standing membranes. The tricomponent PPC/PIL/LiTFSI membranes have an ionic conductivity of 10-6 S·cm-1 at room temperature, exhibiting conductivity that is two orders of magnitude greater than bicomponent PPC/LiTFSI membranes. At 60 °C, the conductivity of PPC/PIL/LiTFSI membranes increases to 10-5 S·cm-1 and further increases to 10-3 S·cm-1 in the presence of plasticizers. Cyclic voltammetry measurements reveal good electrochemical stability of the tricomponent PIL/PPC/LiTFSI membrane that potentially ranges from 0 to 4.5 V vs. Li/Li+. The mechanically reinforced membranes developed in this work are promising electrolytes for potential applications in solid-state batteries.


Assuntos
Líquidos Iônicos , Propano/análogos & derivados , Lítio , Eletrólitos , Íons , Poli A , Polímeros
2.
Biomacromolecules ; 24(12): 5797-5806, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37939018

RESUMO

Amyloid ß peptide can aggregate into thin ß-sheet fibrils or plaques deposited on the extracellular matrix, which is the hallmark of Alzheimer's disease. Multifunctional macromolecular structures play an important role in inhibiting the aggregate formation of amyloidogenic materials and thus are promising candidates with antiamyloidogenic characteristics for the development of next-generation therapeutics. In this study, we evaluate how small differences in the dendritic topology of these structures influence their antiamyloidogenic activity by the comparison of "perfectly dendritic" and "pseudodendritic" macromolecules, both decorated with mannose units. Their compactness, the position of surface units, and the size of glyco-architectures influence their antiamyloidogenic activity against Aß 40, a major component of amyloid plaques. For the advanced analysis of the aggregation of the Aß peptide, we introduce asymmetric flow field flow fractionation as a suitable method for the quantification of large and delicate structures. This alternative method focuses on the quantification of complex aggregates of Aß 40 and glycodendrimer/glyco-pseudodendrimer over different time intervals of incubation, showing a good correlation to ThT assay and CD spectroscopy results. Kinetic studies of the second-generation glyco-pseudodendrimer revealed maximum inhibition of Aß 40 aggregates, verified with atomic force microscopy. The second-generation glyco-pseudodendrimer shows the best antiamyloidogenic properties confirming that macromolecular conformation in combination with optimal functional group distribution is the key to its performance. These molecular properties were validated and confirmed by molecular dynamics simulation.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Peptídeos beta-Amiloides/química , Cinética , Simulação de Dinâmica Molecular , Estrutura Molecular , Substâncias Macromoleculares , Fragmentos de Peptídeos/química
3.
Biomacromolecules ; 23(9): 3648-3662, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35981858

RESUMO

Most sophisticated biological functions and features of cells are based on self-organization, and the coordination and connection between their cell organelles determines their key functions. Therefore, spatially ordered and controllable self-assembly of polymersomes to construct clusters to simulate complex intracellular biological functions has attracted widespread attention. Here, we present a simple one-step copper-free click strategy to cross-link nanoscale pH-responsive and photo-cross-linked polymersomes (less than 100 nm) to micron-level clusters (more than 90% in 0.5-2 µm range). Various influencing factors in the clustering process and subsequent purification methods were studied to obtain optimal clustered polymeric vesicles. Even when polymeric vesicles separately loaded with different enzymes (glucose oxidase and myoglobin) are coclustered, the overall permeability of the clusters can still be regulated through tuning the pH values on demand. Compared with simple blending of those enzyme-loaded polymersomes, the rate of enzymatic cascade reaction increased significantly due to the interconnected complex microstructure established. The connection of catalytic nanocompartments into clusters confining different enzymes of a cascade reaction provides an excellent platform for the development of artificial systems mimicking natural organelles or cells.


Assuntos
Células Artificiais , Análise por Conglomerados , Glucose Oxidase , Concentração de Íons de Hidrogênio , Polímeros/química
4.
Soft Matter ; 17(6): 1457-1462, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33538750

RESUMO

Based on the widely studied poly(l-lactic acid) (PLLA) and polyethylene terephthalate (PET) that are brittle in their fully crystalline form, this Letter shows that they can be made to be super ductile, heat resistant and optically clear by creating nano-sized crystals while preserving the entanglement network. Atomic force microscopic images confirm the perceived nano-confined crystallization. Time-resolved X-ray scattering/diffraction measurements reveal the emergence of cold crystallization during either stress relaxation from large stepwise melt-stretching or annealing of pre-melt-stretched PLLA and PET above Tg. Mechanical tests show that these polymers in such a new state are rigid even well above Tg, e.g., at 100 °C.

5.
Langmuir ; 36(50): 15283-15295, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33306910

RESUMO

Poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) is an attractive polymer for switchable surface coatings based on its multiresponsiveness toward environmental triggers (temperature, pH-value, ionic strength). In this in situ study, we present the complex and tunable thermoresponsiveness of PDMAEMA Guiselin brushes (9 nm, dry thickness), which were prepared via an efficient grafting-to approach. Combining in situ atomic force microscopy (AFM) visualizing the surface topography (x-y plane) and spectroscopic ellipsometry monitoring the swelling behavior of the polymer film (layer thickness, z-direction) offers for the first time a three-dimensional insight into thermoresponsive transitions on the nanoscale. While PDMAEMA films exhibit LCST behavior in the presence of monovalent counterions, it can easily be switched toward an UCST thermoresponsiveness via the addition of small quantities of multivalent ions. In both cases, the transition temperature as well as the sharpness and reversibility of the transition can be tuned via a second external trigger, the ionic strength. Whereas homogeneous surfaces were observed both below and above the LCST in monovalent salt solutions, the UCST transition was characterized by the in situ formation of a nanostructured surface of pinned PDMAEMA micelles with entrapped multivalent counterions. Moreover, it was demonstrated for the first time that the characteristic dimensions of the nanopattern (the diameter and height of the pinned micelles) could be tuned in situ by the pH- and induced UCST thermoresponsiveness of PDMAEMA. This approach therefore provides a novel bottom-up strategy to create and control polymeric nanostructures in an aqueous environment.

6.
Biomacromolecules ; 21(1): 199-213, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31619036

RESUMO

While personalized therapy bears an enormous potential in cancer therapy, the development of flexible, tailorable delivery systems remains challenging. Here, we present a "tool-kit" of various avidin-based bioconjugates (BCs) for the preparation of personalized delivery systems. Corresponding BCs were synthesized using the self-assembly of avidin with various biotinylated ligands, such as one cationic glycodendrimer for dendriplex adsorption and two functional ligands for imaging (glycodendrimers with DOTA or NOTA units) or targeting (biotinylated PEG decorated with ligands). Substituting antibodies for targeting small molecules were coupled to biotin-PEG compounds for addressing the folate receptor (FR), epidermal growth factor receptor (EGFR), and prostate-specific membrane antigen (PSMA). After successful characterization and proof of good storage and redispersion properties of BCs, cytotoxicity assays and first in vivo imaging studies with 99mTc-complexing bioconjugates provide evidence that these BCs and their avidin analogues can be used as tool-kit components in theranostic systems for personalized medicine.


Assuntos
Quelantes/química , Meios de Contraste/química , Peptídeos/química , Animais , Antígenos de Superfície/metabolismo , Avidina/química , Biotina/química , Dendrímeros/química , Diagnóstico por Imagem , Receptores ErbB/metabolismo , Ácido Fólico/química , Glutamato Carboxipeptidase II/metabolismo , Células HEK293 , Compostos Heterocíclicos com 1 Anel/química , Humanos , Masculino , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular/métodos , Nanomedicina/métodos , Polietilenoglicóis/química , Neoplasias da Próstata/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biomacromolecules ; 20(9): 3408-3424, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31389692

RESUMO

This study describes new mechanistic insights in the sequential polyassociation of streptavidin with biotinylated poly(ethyleneimine) glycopolymers and biotinylated PEGylated folic acid components for the preparation of biohybrid structures (BHS) for controlled targeting experiments. Characterization of the BHS revealed that during the formation and postfunctionalization of BHS, reversible dissociation and reassociation processes occur. The BHS are stable over weeks after finalizing the equilibrium-driven polyassociation process. Cellular uptake studies showed that this sequential polyassociation involving biotinylated PEGylated folic acid components does not lead to enhanced cellular uptake of the resulting BHS. In contrast, polyplexes, containing small interfering RNA and bioconjugates (1:1 molar ratio between biotinylated glycopolymer and monomeric streptavidin-lectin fusion protein), enabled us to control the targeting of tumor cells as revealed by knockdown of the tumor-associated protein survivin. Overall, this study demonstrates the high potential of (networklike) streptavidin-biotin interactions with a dynamic character in the formation of complex BHS and extracellular matrix materials.


Assuntos
Ácido Fólico/química , Nanopartículas/química , Polietilenoimina/química , RNA Interferente Pequeno/química , Avidina/química , Biotina/química , Biotinilação , Ácido Fólico/síntese química , Humanos , Polietilenoimina/síntese química , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/efeitos dos fármacos , Estreptavidina/química
8.
Small ; 13(27)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28544767

RESUMO

Therapeutics based on small interfering RNAs (siRNAs) offer a great potential to treat so far incurable diseases or metastatic cancer. However, the broad application of siRNAs using various nonviral carrier systems is hampered by unspecific toxic side effects, poor pharmacokinetics due to unwanted delivery of siRNA-loaded nanoparticles into nontarget organs, or rapid renal excretion. In order to overcome these obstacles, several targeting strategies using chemically linked antibodies and ligands have emerged. This study reports a new modular polyplex carrier system for targeted delivery of siRNA, which is based on transfection-disabled maltose-modified poly(propyleneimine)-dendrimers (mal-PPI) bioconjugated to single chain fragment variables (scFvs). To achieve targeted delivery into tumor cells expressing the epidermal growth factor receptor variant III (EGFRvIII), monobiotinylated anti-EGFRvIII scFv fused to a Propionibacterium shermanii transcarboxylase-derived biotinylation acceptor (P-BAP) is bioconjugated to mal-PPI through a novel coupling strategy solely based on biotin-neutravidin bridging. In contrast to polyplexes containing an unspecific control scFv-P-BAP, the generated EGFRvIII-specific polyplexes are able to exclusively deliver siRNA to tumor cells and tumors by receptor-mediated endocytosis. These results suggest that receptor-mediated uptake of otherwise noninternalized mal-PPI-based polyplexes is a promising avenue to improve siRNA therapy of cancer, and introduce a novel strategy for modular bioconjugation of protein ligands to nanoparticles.


Assuntos
Dendrímeros/química , Nanopartículas/química , Polipropilenos/química , RNA Interferente Pequeno/química , Anticorpos de Cadeia Única/química , Linhagem Celular Tumoral , Endocitose/genética , Endocitose/fisiologia , Humanos
9.
Nano Lett ; 15(3): 1786-90, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25650779

RESUMO

We discovered a new and unexpected effect of reversible actuation of ultrathin semicrystalline polymer films. The principle was demonstrated on the example of thin polycaprolactone-gelatin bilayer films. These films are unfolded at room temperature, fold at temperature above polycaprolactone melting point, and unfold again at room temperature. The actuation is based on reversible switching of the structure of the hydrophobic polymer (polycaprolactone) upon melting and crystallization. We hypothesize that the origin of this unexpected behavior is the orientation of polycaprolactone chains parallel to the surface of the film, which is retained even after melting and crystallization of the polymer or the "crystallization memory effect". In this way, the crystallization generates a directed force, which causes bending of the film. We used this effect for the design of new generation of fully biodegradable thermoresponsive polymeric actuators, which are highly desirable for bionano-technological applications such as reversible encapsulation of cells and design of swimmers.


Assuntos
Plásticos Biodegradáveis/química , Implantes de Medicamento/química , Gelatina/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Poliésteres/química , Cristalização/métodos , Teste de Materiais , Tamanho da Partícula , Temperatura , Temperatura de Transição
10.
Angew Chem Int Ed Engl ; 54(43): 12578-83, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26296431

RESUMO

Dendronization of a hyperbranched polyester with different generation dendrons leads to pseudo-dendritic structures. The hyperbranched core is modified by the divergent coupling of protected monomer units to the functional groups. Compared to dendrimers, the synthetic effort is significantly less, but the properties are very close to those of high-generation dendrimers. The number of functional groups, molar mass, and rheology behavior even in the early generation (G1-G4) pseudo-dendrimers strongly resembles the behavior of dendrimers in higher generations (G5-G8). Comparison of the segmental and internal structure with perfect dendrimers is performed using SANS, dynamic light scattering and viscosity analysis, microscopy and molecular dynamics simulation. The interpretation of the results reveals unique structural characteristics arising from lower segmental density of the core, which turns into a soft nano-sphere with a smooth surface even in the first generation.

11.
Soft Matter ; 10(1): 75-82, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24651668

RESUMO

Polymersomes are at the leading edge of biomedical and nanoparticle research. In order to get closer insights into their mechanical properties, the bilayer forming them needs to be studied thoroughly. Here, we report on the bilayer formation, swelling behaviour, rigidity and fluidity of our membranes derived from pH sensitive and photo-cross-linkable polymersomes.


Assuntos
Reagentes de Ligações Cruzadas/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Polímeros/química , Concentração de Íons de Hidrogênio , Bicamadas Lipídicas/síntese química
12.
Nanomaterials (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37887963

RESUMO

Single-walled carbon nanotubes (SWCNTs) have unique thermal and electrical properties. Coating them with a thin metal layer can provide promising materials for many applications. This study presents a bio-inspired, environmentally friendly technique for CNT metallization using polydopamine (PDA) as an adhesion promoter, followed by electroless plating with nickel. To improve the dispersion in the aqueous reaction baths, part of the SWCNTs was oxidized prior to PDA coating. The SWCNTs were studied before and after PDA deposition and metallization by scanning and transmission electron microscopy, scanning force microscopy, and X-ray photoelectron spectroscopy. These methods verified the successful coating and revealed that the distribution of PDA and nickel was significantly improved by the prior oxidation step. Thermoelectric characterization showed that the PDA layer acted as a p-dopant, increasing the Seebeck coefficient S of the SWCNTs. The subsequent metallization decreased S, but no negative S-values were reached. Both coatings affected the volume conductivity and the power factor, too. Thus, electroless metallization of oxidized and PDA-coated SWCNTs is a suitable method to create a homogeneous metal layer and to adjust their conduction type, but more work is necessary to optimize the thermoelectric properties.

13.
Sci Rep ; 13(1): 5185, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997554

RESUMO

In this experimental study, we investigate the nonlinear dynamic response of nanocomposite beams composed of polybutylene terephthalate (PBT) and branched carbon nanotubes (bCNTs). By varying the weight fraction of bCNTs, we obtain frequency response curves for cantilever specimens under harmonic base excitations, measuring the tip displacement via 3D scanning laser vibrometry. Our findings reveal a surprising nonlinear softening trend in the steady-state response of the cantilevers, which gets switched into hardening for higher bCNT weight fractions and increasing oscillation amplitudes. The interaction of bCNTs with the thermoplastic hosting matrix results in stick-slip hysteresis, causing a softening nonlinearity that counteracts the geometric hardening associated with the nonlinear curvature of the first mode of the cantilever. However, when the weight fraction of bCNTs is greater than 1%, the bridging of the branched CNTs leads to the formation of a strong network that contributes to the hardening response at higher oscillation amplitudes. This mechanical behavior is detected by the trend of the nonlinear harmonic spectra and the equivalent damping ratio estimated using the half-power bandwidth method. To predict the observed unusual experimental behavior, we use a nonlinear mathematical model of the nanocomposite cantilever samples derived from a 3D mesoscale hysteretic model of the PBT/bCNT material. Our results suggest that the presence of bCNTs in a thermoplastic matrix is the main driver of the highly tunable nonlinear stiffness and damping capacity of the material. The reported experimental and modeling results provide valuable insights into the nonlinear dynamic behavior of PBT/bCNT nanocomposites and have potential applications in the design of advanced materials with tailored mechanical properties.

14.
Macromol Rapid Commun ; 33(17): 1466-73, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22836866

RESUMO

For using successful (ultra)thin dendritic macromolecule films in (bio)sensing and microfluidic devices and for obtaining reproducible film properties, alteration effects arising from precoatings have to be avoided. Here, oligosaccharide-modified hyperbranched poly(ethylene imine)s (PEI-OS) were used to fabricate very thin PEI-OS films (15-20 nm in dry state), cross-linked with citric acid under condensation, and vacuum condition. However, no reactive precoating is necessary to obtain stable films, which allows very simple film preparation and avoids alteration of the PEIS-OS film properties arising from precoating. Several methods [(in situ) ellipsometry, AFM, XPS, (in situ) ATR-IR, streaming potential measurements] were applied to characterize homogeneity, surface morphology, and stability of these PEI-OS films between pH 2 and pH 10, but also the low protein adsorption behavior.


Assuntos
Iminas/química , Oligossacarídeos/química , Polietilenos/química , Proteínas/química , Adsorção , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Proteínas/metabolismo , Dióxido de Silício/química , Propriedades de Superfície
15.
Polymers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631923

RESUMO

Demand for direct chemical modification of functional material on a surface is increasing in various fields. A new approach for a functionalized surface is investigated by applying a conventional laser in order to generate chemical activation by photothermal energy. Poly(ethyleneimine) (PEI), with a high density of amino groups, is chemically grafted on poly(methyl methacrylate) (PMMA) by irradiation of a CO2 laser (10.6 µm). Laser parameters such as power, scan rate, and focal length are observed to play an important role in order to introduce effective photothermal energy for the chemical reaction between PEI and PMMA. By optimization of laser parameters, the amide compound is produced as a result of the reaction of amine from PEI and the ester of PMMA successfully. The PMMA surface modified with PEI is analyzed by XPS and TOF-SIMS to identify the functional groups. Furthermore, the surface is characterized in terms of wettability, adhesion force, and surface charge for various applications. Finally, reaction with dye and metal on the amine-terminated PMMA shows promising results in supplying a selective and reliable functional substrate.

16.
Polymers (Basel) ; 14(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35808760

RESUMO

This study followed the approach of dispersing and localizing carbon nanotubes (CNTs) in nanostructured domains of block copolymers (BCPs) by shortening the CNTs via ball milling. The aim was to selectively tune the electrical and mechanical properties of the resulting nanocomposites, e.g., for use as sensor materials. Multiwalled carbon nanotubes (MWCNTs) were ground into different size fractions. The MWCNT length distribution was evaluated via transmission electron microscopy and dynamic light scattering. The nanostructure of the BCPs and the glass transition temperatures of the PB-rich and PS phases were not strongly affected by the addition of CNTs up to 2 wt%. However, AFM and TEM investigations indicated a partial localization of the shortened CNTs in the soft PB-rich phase or at the interface of the PB-rich and PS phase, respectively. The stress-strain behavior of the solution-mixed composites differed little from the mechanical property profile of the neat BCP and was largely independent of CNT amount and CNT size fraction. Significant changes could only be observed for Young's modulus and strain at break and may be attributed to CNT localization and small changes in morphology. For nanocomposites with unmilled CNTs, the electrical percolation threshold was less than 0.1 wt%. As the CNTs were shortened, the resistivity increased and the percolation threshold shifted to higher CNT contents. Composites with CNTs ground for 7.5 h and 13.5 h showed no bulk conductivity but significantly decreased surface resistivity on the bottom side of the films, which could be attributed to a sedimentation process of the grind and thereby highly compressed CNT agglomerates during evaporation.

17.
ACS Appl Mater Interfaces ; 14(4): 5921-5931, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040627

RESUMO

Metallization is a common method to produce functional or decorative coatings on plastic surfaces. State-of-the-art technologies require energy-intensive process steps and the use of organic solvents or hazardous substances to achieve sufficient adhesion between the polymer and the metal layer. The present study introduces a facile bio-inspired "green" approach to improve this technology: the use of dopamine, a small-molecule mimic of the main structural component of adhesive mussel proteins, as an adhesion promoter. To understand dopamine adhesion and identify conditions for successful metallization, polyethylene surfaces were dip-coated with dopamine and metallized with nickel by electroless metallization; essential parameters such as temperature, pH value, concentration of dopamine and buffer, and the deposition time were systematically varied. Effects of adding oxidants to the dopamine bath, cross-linking, thermal and UV post-treatment of the polydopamine film, and plasma pretreatment of the substrate were investigated. The properties of the polydopamine layer and the quality of the metal film were studied by physico-chemical, optical, and mechanical techniques. It was shown that simple dip-coating of the substrate with dopamine under optimal conditions is sufficient to support metal layers with a good optical quality. Technologically relevant metal layer quality and adhesion were obtained with annealed and UV-treated polydopamine films and enhanced by plasma pretreatment of the substrate. The study shows that dopamine provides a new interfacial design for plastic metallization that can reduce energy consumption, use of hazardous substances, and reject rate during manufacturing. The results are essential findings for further technological developments of a universal platform to promote adhesion between plastics and metal or potentially also other material classes, enabling economic material development and more eco-friendly applications.


Assuntos
Indóis/química , Níquel/química , Polietileno/química , Polímeros/química , Adesividade , Dopamina/química , Química Verde , Polimerização , Propriedades de Superfície
18.
Int J Pharm ; 624: 122023, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35843363

RESUMO

The polymer/solvent system poly(l-lactic acid)/ethyl butylacetylaminopropionate (PLLA/IR3535) is regarded as an insect-repellent-delivery system, serving, e.g., for fighting mosquito-borne tropical diseases. In such systems the solid polymer hosts the liquid repellent, with the latter slowly released to the environment, expelling mosquitoes. As a new approach, exceeding prior work about application of different technologies to obtain such devices, in this work, samples of the polymer/repellent system PLLA/IR3535 were prepared by 3D-printing. The experiments showed that it is possible to print 3D-parts containing up to 25 m% repellent, with an only minor loss of repellent during the printing process. For samples containing low amount of repellent, crystallization of PLLA was suppressed due to the rather fast cooling step and the low bed temperature of around 25 °C, being lower than the glass transition temperature of the homogeneous polymer/repellent strands. At higher repellent concentration, due to the lowering of the glass transition temperature to near or even below ambient temperature, the crystallinity slowly increased during storage after printing. For all samples, regardless of the initial repellent concentration, the repellent-release rate increases with temperature, and at ambient temperature the release-time constant is in the order of 10 days. The study successfully proved the applicability of the technology of extrusion-based 3D-printing for the preparation of polymer parts with a specific shape/design containing mosquito-repellent at a concentration which raises the expectation to be used as a repellent delivery-device.


Assuntos
Repelentes de Insetos/administração & dosagem , Repelentes de Insetos/química , Impressão Tridimensional , Doenças Transmitidas por Vetores/prevenção & controle , Animais , Insetos , Poliésteres , Polímeros/química , Propionatos/química , Clima Tropical
19.
Mater Horiz ; 9(5): 1468-1478, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35244665

RESUMO

Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 µm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method. Direct imprinting of both the active surface and LIG electrode on a tribonegative FKM has not been attempted before. The resulting triboelectric module exhibits impressive maximum power density of 715 mW m-2, open circuit voltage and maximum output current of 148 V and 9.6 µA respectively for a matching load of 10 MΩ. Moreover, the TENG unit is very robust and sustained high electrical output even at 200% elongation. A dielectric-to-dielectric TENG-based tactile sensor is also constructed using FKM (negative tribolayer) and TiO2 deposited micropatterned PDMS. Resulting tribo-sensor demonstrates remarkable motion and force sensitivity. It can also distinguish subtle human contact force that can simulate skin with high sensitivity and therefore, can be utilized for potential e-skin/bionic skin applications in health and human-machine interfaces.


Assuntos
Nanotecnologia , Dispositivos Eletrônicos Vestíveis , Elasticidade , Eletrodos , Humanos , Impressão Tridimensional
20.
ACS Macro Lett ; 10(6): 684-689, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35549104

RESUMO

The different thermal stabilities of shear-induced pointlike and shishlike crystallization precursors of polyamide 11, generated in a parallel-plate rheometer and coexisting in the same sample, were quantified by hot-stage microscopy, by performing self-seed crystallization experiments. Crystals formed at low supercooling of the melt from these different types of precursors melt at about the same temperature. Annealing of the melt at different temperatures for a predefined time revealed dissolution/disordering of these precursors at 10-15 K higher temperature, near the equilibrium melting point. Despite their similar thermal stabilities, pointlike and shishlike crystallization precursors exhibit distinctly different nucleation efficacies. Under identical crystallization conditions, shishlike precursors cause faster crystallization than pointlike crystal nuclei. The faster crystallization of the shishlike nuclei can be explained, for example, by (a) the larger size of the shishlike precursors, providing numerous nucleation sites; (b) the more perfect chain conformation at the shish surface, which serves as a substrate for crystallization; or perhaps (c) the higher local orientation of the surrounding melt compared with molecular segments near pointlike nuclei, reducing the activation energy for crystallization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA