Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Anal Chem ; 91(19): 12149-12155, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31454479

RESUMO

Caenorhabditis elegans is used extensively as a medical and toxicological model organism. However, little is known about background levels of oxidatively induced DNA damage in the nematode or how culturing methods affect DNA damage levels. The tough C. elegans cuticle makes it challenging to extract genomic DNA without harsh procedures that can artifactually increase DNA damage. Therefore, a mild extraction protocol based on enzymatic digestion of the C. elegans cuticle with high-salt phase-separation of DNA has been developed and optimized. This method allows for efficient extraction of >50 µg DNA using a minimum of 250000 nematodes grown in liquid culture. The extracted DNA exhibited acceptable RNA levels (<10% contamination), functionality in polymerase chain reaction assays, and reproducible DNA fragmentation. Gas chromatography/tandem mass spectrometry (GC-MS/MS) with isotope-dilution measured lower lesion levels in high-salt extracts than in phenol extracts. Phenolic extraction produced a statistically significant increase in 8-hydroxyguanine, a known artifact, and additional artifactual increases in 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 4,6-diamino-5-formamidopyrimidine, and 8-hydroxyadenine. The high-salt DNA extraction procedure utilizes green solvents and reagents and minimizes artifactual DNA damage, making it more suitable for molecular and toxicological studies in C. elegans. This is, to our knowledge, the first use of GC-MS/MS to measure multiple 8,5'-cyclopurine-2'-deoxynucleosides in a toxicologically important terrestrial organism.


Assuntos
Caenorhabditis elegans/genética , Fracionamento Químico/métodos , Dano ao DNA , DNA de Helmintos/isolamento & purificação , Adenina/análogos & derivados , Adenina/química , Animais , Artefatos , Feminino , Cromatografia Gasosa-Espectrometria de Massas/métodos , Guanina/análogos & derivados , Guanina/química , Humanos , Células MCF-7 , Oxirredução , Fenóis/química , Pirimidinas/análise , Pirimidinas/química , Técnica de Diluição de Radioisótopos , Reprodutibilidade dos Testes , Cloreto de Sódio/química , Espectrometria de Massas em Tandem/métodos
2.
Chem Res Toxicol ; 32(1): 80-89, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30525498

RESUMO

Dietary exposure to aflatoxin B1 (AFB1) is a significant contributor to the incidence of hepatocellular carcinomas globally. AFB1 exposure leads to the formation of AFB1-N7-guanine (AFB1-N7-Gua) and two diastereomers of the imidazole ring-opened 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) in DNA. These adducts lead to G → T transversion mutations with the ring-opened adduct being more mutagenic than the cationic species. Accurate measurement of these three adducts as biomarkers in DNA and urine will help identify dietary exposure to AFB1 as a risk factor in the development of hepatocellular carcinoma worldwide. Herein, we report an improved methodology for the measurement of AFB1-N7-Gua and the two diastereomers of AFB1-FapyGua using liquid chromatography-tandem mass spectrometry with isotope dilution. We measured the levels of these compounds in liver DNA of six control mice and six AFB1-treated mice. Levels varying from 1.5 to 45 lesions/106 DNA bases in AFB1-treated mice were detected depending on the compound and animal. No background levels of these adducts were detected in control mice. We also tested whether the AFB1 treatment caused oxidatively induced DNA base damage using gas chromatography-tandem mass spectrometry with isotope dilution. Although background levels of several pyrimidine- and purine-derived lesions were detected, no increases in these levels were found upon AFB1 treatment of mice. On the other hand, significantly increased levels of (5' R)- and (5' S)-8,5'-cyclo-2'-deoxyadenosines were observed in liver DNA of AFB1-treated mice. The impact of this work is expected to achieve the accurate measurement of three AFB1-DNA adducts and oxidatively induced DNA lesions as biomarkers of AFB1 exposure as germane to investigations designed for the prevention of aflatoxin-related hepatocellular carcinomas and for determining the effects of genetic deficiencies in human populations.


Assuntos
Aflatoxinas/química , Aflatoxinas/farmacologia , Adutos de DNA/química , Dano ao DNA , Guanina/química , Técnica de Diluição de Radioisótopos , Aflatoxinas/administração & dosagem , Animais , Cromatografia Líquida , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Conformação Molecular , Oxirredução
3.
Clin Exp Allergy ; 48(12): 1676-1687, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30244512

RESUMO

BACKGROUND: Ragweed pollen extract (RWPE) induces TLR4-NFκB-CXCL-dependent recruitment of ROS-generating neutrophils to the airway and OGG1 DNA glycosylase-dependent excision of oxidatively induced 8-OH-Gua DNA base lesions from the airway epithelial cell genome. Administration of free 8-OH-Gua base stimulates RWPE-induced allergic lung inflammation. These studies suggest that stimulation of innate receptors and their adaptor by allergenic extracts initiates excision of a set of DNA base lesions that facilitate innate/allergic lung inflammation. OBJECTIVE: To test the hypothesis that stimulation of a conserved innate receptor/adaptor pathway by allergenic extracts induces excision of a set of pro-inflammatory oxidatively induced DNA base lesions from the lung genome that stimulate allergic airway inflammation. METHODS: Wild-type (WT), Tlr4KO, Tlr2KO, Myd88KO, and TrifKO mice were intranasally challenged once or repeatedly with cat dander extract (CDE), and innate or allergic inflammation and gene expression were quantified. We utilized GC-MS/MS to quantify a set of oxidatively induced DNA base lesions after challenge of naïve mice with CDE. RESULTS: A single CDE challenge stimulated innate neutrophil recruitment that was partially dependent on TLR4 and TLR2, and completely on Myd88, but not TRIF. A single CDE challenge stimulated MyD88-dependent excision of DNA base lesions 5-OH-Cyt, FapyAde, and FapyGua from the lung genome. A single challenge of naïve WT mice with 5-OH-Cyt stimulated neutrophilic lung inflammation. Multiple CDE instillations stimulated MyD88-dependent allergic airway inflammation. Multiple administrations of 5-OH-Cyt with CDE stimulated allergic sensitization and allergic airway inflammation. CONCLUSIONS AND CLINICAL RELEVANCE: We show for the first time that CDE challenge stimulates MyD88-dependent excision of DNA base lesions. Our data suggest that the resultant-free base(s) contribute to CDE-induced innate/allergic lung inflammation. We suggest that blocking the MyD88 pathway in the airways with specific inhibitors may be a novel targeted strategy of inhibiting amplification of innate and adaptive immune inflammation in allergic diseases by oxidatively induced DNA base lesions.


Assuntos
Citosina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Pulmão/metabolismo , Estresse Oxidativo , Alérgenos/imunologia , Animais , Biomarcadores , Gatos , Cromatografia Gasosa , Citosina/farmacologia , Citosina/toxicidade , Modelos Animais de Doenças , Hipersensibilidade/patologia , Imunidade Inata , Imunoglobulina E/imunologia , Pulmão/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Pneumonia/etiologia , Pneumonia/metabolismo , Pneumonia/patologia , Espécies Reativas de Oxigênio , Espectrometria de Massas em Tandem
4.
Environ Toxicol ; 32(9): 2144-2153, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28568507

RESUMO

Activities of fast growing human population are altering freshwater ecosystems, endangering their inhabitants and public health. Organic and trace compounds have a high potential for adverse impacts on aquatic organisms in some Great Lakes tributaries. Toxic compounds in tissues of organisms living in contaminated environments change their metabolism and alter cellular components. We measured oxidatively induced DNA damage in the soft tissues of dreissenid mussels to check on the possible contaminant-induced impact on their DNA. The animals were obtained from archived samples of the National Oceanic and Atmospheric Administration (NOAA) Mussel Watch Program. Mussels were collected from the harbor of Ashtabula River in Ohio, and a reference area located at the Lake Erie shore. Using gas chromatography-tandem mass spectrometry with isotope dilution, we identified and quantified numerous oxidatively modified DNA bases and 8,5'-cyclopurine-2'-deoxynucleosides. We found significant differences in the concentrations of these potentially mutagenic and/or lethal lesions in the DNA of mussels from the harbor as compared to the animals collected at the reference site. These results align NOAA's data showing that elevated concentrations of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and heavy metals were found in mussels within the harbor as compared to mussels collected in the reference site. The measured DNA lesions can be used as biomarkers for identifying DNA damage in mussels from polluted and reference sites. Such biomarkers are needed to identify the bioeffects of contaminants in affected organisms, as well as whether remedial actions have proven successful in reducing observed toxic effects.


Assuntos
Bivalves/efeitos dos fármacos , Dano ao DNA , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/análise , Bivalves/química , Bivalves/genética , Monitoramento Ambiental , Lagos , Metais Pesados/análise , Metais Pesados/toxicidade , Testes de Mutagenicidade , Nucleosídeos/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/análise
5.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703770

RESUMO

Some engineered nanomaterials (ENMs) may have the potential to cause damage to the genetic material in living systems. The mechanistic machinery functioning at the cellular/molecular level, in the form of DNA repair processes, has evolved to help circumvent DNA damage caused by exposure to a variety of foreign substances. Recent studies have contributed to our understanding of the various DNA damage repair pathways involved in the processing of DNA damage. However, the vast array of ENMs may present a relatively new challenge to the integrity of the human genome; therefore, the potential hazard posed by some ENMs necessitates the evaluation and understanding of ENM-induced DNA damage repair pathways. This review focuses on recent studies highlighting the differential regulation of DNA repair pathways, in response to a variety of ENMs, and discusses the various factors that dictate aberrant repair processes, including intracellular signalling, spatial interactions and ENM-specific responses.


Assuntos
Reparo do DNA , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Dano ao DNA , Reparo do DNA/genética , Regulação da Expressão Gênica , Humanos , Transdução de Sinais/genética
6.
Biochemistry ; 54(38): 5787-90, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26359670

RESUMO

Apurinic/apyrimidinic endonuclease 1 (APE1) is a DNA repair protein and plays other important roles. Increased levels of APE1 in cancer have been reported. However, available methods for measuring APE1 levels are indirect and not quantitative. We previously developed an approach using liquid chromatography and tandem mass spectrometry with isotope dilution to accurately measure APE1 levels. Here, we applied this methodology to measure APE1 levels in normal and cancerous human breast tissues. Extreme expression of APE1 in malignant tumors was observed, suggesting that breast cancer cells may require APE1 for survival. Accurate measurement of APE1 may be essential for the development of novel treatment strategies and APE1 inhibitors as anticancer drugs.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/análise , Sequência de Aminoácidos , Neoplasias da Mama/química , Linhagem Celular Tumoral , Cromatografia Líquida , Feminino , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Espectrometria de Massas em Tandem
7.
Nucleic Acids Res ; 41(10): 5368-81, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580547

RESUMO

Transcription-blocking oxidative DNA damage is believed to contribute to aging and to underlie activation of oxidative stress responses and down-regulation of insulin-like signaling (ILS) in Nucleotide Excision Repair (NER) deficient mice. Here, we present the first quantitative proteomic description of the Caenorhabditis elegans NER-defective xpa-1 mutant and compare the proteome and transcriptome signatures. Both methods indicated activation of oxidative stress responses, which was substantiated biochemically by a bioenergetic shift involving increased steady-state reactive oxygen species (ROS) and Adenosine triphosphate (ATP) levels. We identify the lesion-detection enzymes of Base Excision Repair (NTH-1) and global genome NER (XPC-1 and DDB-1) as upstream requirements for transcriptomic reprogramming as RNA-interference mediated depletion of these enzymes prevented up-regulation of genes over-expressed in the xpa-1 mutant. The transcription factors SKN-1 and SLR-2, but not DAF-16, were identified as effectors of reprogramming. As shown in human XPA cells, the levels of transcription-blocking 8,5'-cyclo-2'-deoxyadenosine lesions were reduced in the xpa-1 mutant compared to the wild type. Hence, accumulation of cyclopurines is unlikely to be sufficient for reprogramming. Instead, our data support a model where the lesion-detection enzymes NTH-1, XPC-1 and DDB-1 play active roles to generate a genomic stress signal sufficiently strong to result in transcriptomic reprogramming in the xpa-1 mutant.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Reparo do DNA , Proteoma , Transcriptoma , Proteína de Xeroderma Pigmentoso Grupo A/genética , Animais , Antioxidantes/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , DNA Glicosilases/genética , Endonucleases/genética , Mutação , Purinas/metabolismo , Proteínas Ubiquitinadas/metabolismo
8.
DNA Repair (Amst) ; 139: 103695, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38795603

RESUMO

The base excision repair (BER) pathway is a precise and versatile mechanism of DNA repair that is initiated by DNA glycosylases. Endonuclease VIII-like 1 (NEIL1) is a bifunctional glycosylase/abasic site (AP) lyase that excises a damaged base and subsequently cleaves the phosphodiester backbone. NEIL1 is able to recognize and hydrolyze a broad range of oxidatively-induced base lesions and substituted ring-fragmented guanines, including aflatoxin-induced 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). Due to NEIL1's protective role against these and other pro-mutagenic lesions, it was hypothesized that naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 could increase human risk for aflatoxin-induced hepatocellular carcinoma (HCC). Given that populations in South Asia experience high levels of dietary aflatoxin exposures and hepatitis B viral infections that induce oxidative stress, investigations on SNP variants of NEIL1 that occur in this region may have clinical implications. In this study, the most common South Asian variants of NEIL1 were expressed, purified, and functionally characterized. All tested variants exhibited activities and substrate specificities similar to wild type (wt)-NEIL1 on high-molecular weight DNA containing an array of oxidatively-induced base lesions. On short oligodeoxynucleotides (17-mers) containing either a site-specific apurinic/apyrimidinic (AP) site, thymine glycol (ThyGly), or AFB1-FapyGua, P206L-NEIL1 was catalytically comparable to wt-NEIL1, while the activities of NEIL1 variants Q67K and T278I on these substrates were ≈2-fold reduced. Variant T103A had a greatly diminished ability to bind to 17-mer DNAs, limiting the subsequent glycosylase and lyase reactions. Consistent with this observation, the rate of excision by T103A on 17-mer oligodeoxynucleotides containing ThyGly or AFB1-FapyGua could not be measured. However, the ability of T103A to excise ThyGly was improved on longer oligodeoxynucleotides (51-mers), with ≈7-fold reduced activity compared to wt-NEIL1. Our studies suggest that NEIL1 variant T103A may present a pathogenic phenotype that is limited in damage recognition, potentially increasing human risk for HCC.


Assuntos
DNA Glicosilases , Reparo do DNA , Polimorfismo de Nucleotídeo Único , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , DNA Glicosilases/química , Humanos , Aflatoxina B1/metabolismo , Dano ao DNA , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/enzimologia , Especificidade por Substrato , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/enzimologia
9.
J Proteome Res ; 12(2): 1049-61, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23268652

RESUMO

Accumulated evidence points to DNA repair capacity as an important factor in cancer and other diseases. DNA repair proteins are promising drug targets and are emerging as prognostic and therapeutic biomarkers. Thus, the knowledge of the overexpression or underexpression levels of DNA repair proteins in tissues will be of fundamental importance. In this work, mass spectrometric assays were developed for the measurement in tissues of the human DNA repair protein NEIL1 (hNEIL1), which is involved in base excision and nucleotide excision repair pathways of oxidatively induced DNA damage. Liquid chromatography/isotope-dilution tandem mass spectrometry (LC-MS/MS), in combination with a purified and fully characterized recombinant (15)N-labeled analogue of hNEIL1 ((15)N-hNEIL1) as an internal standard, was utilized to develop an accurate method for the quantification of hNEIL1. Both hNEIL1 and (15)N-hNEIL1 were hydrolyzed with trypsin, and 18 tryptic peptides from each protein were identified by LC-MS/MS on the basis of their full-scan mass spectra. These peptides matched the theoretical peptides expected from trypsin hydrolysis of hNEIL1 and provided a statistically significant protein score that would unequivocally identify hNEIL1. The product ion spectra of the tryptic peptides from both proteins were recorded, and the characteristic product ions were defined. Selected-reaction monitoring was used to analyze mixtures of hNEIL1 and (15)N-hNEIL1 on the basis of product ions. Additional confirmation of positive identification was demonstrated via separation of the proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and in-gel tryptic digestion followed by LC-MS/MS analysis. These results suggest that the developed assays would be highly suitable for the in vivo positive identification and accurate quantification of hNEIL1 in tissues.


Assuntos
Cromatografia Líquida/normas , DNA Glicosilases/isolamento & purificação , Reparo do DNA , DNA/metabolismo , Espectrometria de Massas em Tandem/normas , Sequência de Aminoácidos , Animais , Bovinos , DNA/química , Dano ao DNA , DNA Glicosilases/química , DNA Glicosilases/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Humanos , Técnicas de Diluição do Indicador , Dados de Sequência Molecular , Isótopos de Nitrogênio , Proteólise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Padrões de Referência , Tripsina/química
10.
Proc Natl Acad Sci U S A ; 107(11): 4925-30, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20185759

RESUMO

To protect cells from oxidative DNA damage and mutagenesis, organisms possess multiple glycosylases to recognize the damaged bases and to initiate the Base Excision Repair pathway. Three DNA glycosylases have been identified in mammals that are homologous to the Escherichia coli Fpg and Nei proteins, Neil1, Neil2, and Neil3. Neil1 and Neil2 in human and mouse have been well characterized while the properties of the Neil3 protein remain to be elucidated. In this study, we report the characterization of Mus musculus (house mouse) Neil3 (MmuNeil3) as an active DNA glycosylase both in vitro and in vivo. In duplex DNA, MmuNeil3 recognizes the oxidized purines, spiroiminodihydantoin (Sp), guanidinohydantoin (Gh), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) and 4,6-diamino- 5-formamidopyrimidine (FapyA), but not 8-oxo-7,8-dihydroguanine (8-oxoG). Interestingly, MmuNeil3 prefers lesions in single-stranded DNA and in bubble structures. In contrast to other members of the family that use the N-terminal proline as the nucleophile, MmuNeil3 forms a Schiff base intermediate via its N-terminal valine. We expressed the glycosylase domain of MmuNeil3 (MmuNeil3Delta324) in an Escherichia coli triple mutant lacking Fpg, Nei, and MutY glycosylase activities and showed that MmuNeil3 greatly reduced both the spontaneous mutation frequency and the level of FapyG in the DNA, suggesting that Neil3 plays a role in repairing FapyG in vivo.


Assuntos
DNA Glicosilases/metabolismo , Endodesoxirribonucleases/metabolismo , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Animais , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/química , Endodesoxirribonucleases/química , Escherichia coli/genética , Raios gama , Guanidinas/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Hidantoínas/metabolismo , Cinética , Camundongos , Dados de Sequência Molecular , Mutação/genética , Pirimidinas/metabolismo , Bases de Schiff/metabolismo , Alinhamento de Sequência , Compostos de Espiro/metabolismo , Especificidade por Substrato/efeitos da radiação , Valina/metabolismo
11.
ACS Cent Sci ; 9(6): 1170-1179, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37396864

RESUMO

The consumption of foods prepared at high temperatures has been associated with numerous health risks. To date, the chief identified source of risk has been small molecules produced in trace levels by cooking and reacting with healthy DNA upon consumption. Here, we considered whether the DNA in food itself also presents a hazard. We hypothesize that high-temperature cooking may cause significant damage to the DNA in food, and this damage might find its way into cellular DNA by metabolic salvage. We tested cooked and raw foods and found high levels of hydrolytic and oxidative damage to all four DNA bases upon cooking. Exposing cultured cells to damaged 2'-deoxynucleosides (particularly pyrimidines) resulted in elevated DNA damage and repair responses in the cells. Feeding a deaminated 2'-deoxynucleoside (2'-deoxyuridine), and DNA containing it, to mice resulted in substantial uptake into intestinal genomic DNA and promoted double-strand chromosomal breaks there. The results suggest the possibility of a previously unrecognized pathway whereby high-temperature cooking may contribute to genetic risks.

12.
ACS Omega ; 8(16): 14841-14854, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37125130

RESUMO

Aflatoxin B1 (AFB1) exposure through contaminated food is a primary contributor to hepatocellular carcinogenesis worldwide. Hepatitis B viral infections in livers dramatically increase the carcinogenic potency of AFB1 exposures. Liver cytochrome P450 oxidizes AFB1 to the epoxide, which in turn reacts with N7-guanine in DNA, producing the cationic trans-8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct (AFB1-N7-Gua). The opening of the imidazole ring of AFB1-N7-Gua under physiological conditions causes the formation of the cis- and trans-diastereomers of 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua). These adducts primarily lead to G → T mutations, with AFB1-FapyGua being significantly more mutagenic than AFB1-N7-Gua. The unequivocal identification and accurate quantification of these AFB1-Gua adducts as biomarkers are essential for a fundamental understanding and prevention of AFB1-induced hepatocellular carcinogenesis. Among a variety of analytical techniques used for this purpose, liquid chromatography-tandem mass spectrometry, with the use of the stable isotope-labeled analogues of AFB1-FapyGua and AFB1-N7-Gua as internal standards, provides the greatest accuracy and sensitivity. cis-AFB1-FapyGua-15N5, trans-AFB1-FapyGua-15N5, and AFB1-N7-Gua-15N5 have been synthesized and used successfully as internal standards. However, the availability of these standards from either academic institutions or commercial sources ceased to exist. Thus, quantitative genomic data regarding AFB1-induced DNA damage in animal models and humans remain challenging to obtain. Previously, AFB1-N7-Gua-15N5 was prepared by reacting AFB1-exo-8,9-epoxide with the uniformly 15N5-labeled DNA isolated from algae grown in a pure 15N-environment, followed by alkali treatment, resulting in the conversion of AFB1-N7-Gua-15N5 to AFB1-FapyGua-15N5. In the present work, we used a different and simpler approach to synthesize cis-AFB1-FapyGua-15N5, trans-AFB1-FapyGua-15N5, and AFB1-N7-Gua-15N5 from a partial double-stranded 11-mer Gua-15N5-labeled oligodeoxynucleotide, followed by isolation and purification. We also show the validation of these 15N5-labeled standards for the measurement of cis-AFB1-FapyGua, trans-AFB1-FapyGua, and AFB1-N7-Gua in DNA of livers of AFB1-treated mice.

13.
DNA Repair (Amst) ; 129: 103544, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517321

RESUMO

Nei-like glycosylase 1 (NEIL1) is a DNA repair enzyme that initiates the base excision repair (BER) pathway to cleanse the human genome of damage. The substrate specificity of NEIL1 includes several common base modifications formed under oxidative stress conditions, as well as the imidazole ring open adducts that are induced by alkylating agents following initial modification at N7 guanine. An example of the latter is the persistent and mutagenic 8,9-dihydro-8-(2,6-diamino-4-oxo-3,4-dihydropyrimid-5-yl-formamido)-9-hydroxyaflatoxin B1 (AFB1-FapyGua) adduct, resulting from the alkylating agent aflatoxin B1 (AFB1) exo-8-9-epoxide. Naturally occurring single nucleotide polymorphic (SNP) variants of NEIL1 are hypothesized to be associated with an increased risk for development of early-onset hepatocellular carcinoma (HCC), especially in environments with high exposures to aflatoxins and chronic inflammation from viral infections and alcohol consumption. Given that AFB1 exposures and hepatitis B viral (HBV) infections represent a major problem in the developing countries of sub-Saharan Africa, it is pertinent to study SNP NEIL1 variants that are present in this geographic region. In this investigation, we characterized the three most common NEIL1 variants found in this region: P321A, R323G, and I182M. Biochemical analyses were conducted to determine the proficiencies of these variants in initiating the repair of DNA lesions. Our data show that damage recognition and excision activities of P321A and R323G were near that of wild-type (WT) NEIL1 for both thymine glycol (ThyGly) and AFB1-FapyGua. The substrate specificities of these variants with respect to various oxidatively-induced base lesions were also similar to that of WT. In contrast, the I182M variant was unstable, such that it precipitated under a variety of conditions and underwent rapid inactivation at a biologically relevant temperature, with partial stabilization being observed in the presence of undamaged DNA. This study provides insight regarding the potential increased risk for early-onset HCC in human populations carrying the NEIL1 I182M variant.


Assuntos
Carcinoma Hepatocelular , DNA Glicosilases , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , DNA Glicosilases/metabolismo , Mutagênese , Nucleotídeos , Reparo do DNA
14.
Biochemistry ; 51(9): 1822-4, 2012 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-22360777

RESUMO

We hypothesized that DNA damage products (5'R)-8,5'-cyclo-2'-deoxyadenosine (R-cdA) and (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA) may be well-suited biomarkers of risk and diagnosis for atherosclerosis. We tested this hypothesis by measuring the levels of R-cdA and S-cdA and another product, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), in urine of atherosclerosis patients and healthy individuals using liquid chromatography-tandem mass spectrometry with isotope dilution. We showed the presence of these products at significantly greater concentrations in urine of atherosclerosis patients than in that of healthy individuals. Our data suggest that R-cdA and S-cdA can be accurately and reproducibly measured in human urine as potential biomarkers of risk and diagnosis for atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Dano ao DNA , Desoxiadenosinas/urina , Aterosclerose/urina , Biomarcadores/urina , Cromatografia Líquida , Humanos , Estereoisomerismo , Espectrometria de Massas em Tandem
15.
Environ Sci Technol ; 46(3): 1819-27, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22201446

RESUMO

Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants.


Assuntos
Cobre/toxicidade , Dano ao DNA , Lolium/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Raphanus/efeitos dos fármacos , Cobre/farmacocinética , Cromatografia Gasosa-Espectrometria de Massas , Lolium/genética , Lolium/crescimento & desenvolvimento , Lolium/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Raphanus/genética , Raphanus/crescimento & desenvolvimento , Raphanus/metabolismo , Espectrometria por Raios X
16.
DNA Repair (Amst) ; 117: 103372, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35870279

RESUMO

Base excision repair is the major pathway for the repair of oxidatively-induced DNA damage, with DNA glycosylases removing modified bases in the first step. Human NTHL1 is specific for excision of several pyrimidine- and purine-derived lesions from DNA, with loss of function NTHL1 showing a predisposition to carcinogenesis. A rare single nucleotide polymorphism of the Nthl1 gene leading to the substitution of Asp239 with Tyr within the active site, occurs within global populations. In this work, we overexpressed and purified the variant NTHL1-Asp239Tyr (NTHL1-D239Y) and determined the substrate specificity of this variant relative to wild-type NTHL1 using gas chromatography-tandem mass spectrometry with isotope-dilution, and oxidatively-damaged genomic DNA containing multiple pyrimidine- and purine-derived lesions. Wild-type NTHL1 excised seven DNA base lesions with different efficiencies, whereas NTHL1-D239Y exhibited no glycosylase activity for any of these lesions. We also measured the activities of human glycosylases OGG1 and NEIL1, and E. coli glycosylases Nth and Fpg under identical experimental conditions. Different substrate specificities among these DNA glycosylases were observed. When mixed with NTHL1-D239Y, the activity of NTHL1 was not reduced, indicating no substrate binding competition. These results and the inactivity of the variant D239Y toward the major oxidatively-induced DNA lesions points to the importance of the understanding of this variant's role in carcinogenesis and the potential of individual susceptibility to cancer in individuals carrying this variant.


Assuntos
DNA Glicosilases , Carcinogênese , DNA/metabolismo , Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Escherichia coli/genética , Genômica , Humanos , Purinas , Pirimidinas/metabolismo , Especificidade por Substrato
17.
Nanomedicine (Lond) ; 17(26): 2011-2021, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36853189

RESUMO

Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.


Inhibitors of DNA repair proteins are increasingly being utilized as potential anticancer agents to supplement traditional chemotherapy and radiation-based approaches. The present study was focused on investigating the use of iron oxide nanoparticles to inhibit the expression of relevant human DNA repair proteins in a cellular model (MCL-5 cells). The authors utilized liquid chromatography­tandem mass spectrometry with isotope dilution to measure the expression levels of two different DNA repair proteins (MTH1 and APE1) in cells after the cells were exposed to increasing levels of the iron oxide nanoparticles. The authors observed significant decreases in DNA repair protein levels that were associated with increasing doses of the iron oxide nanoparticles. The authors' findings warrant more comprehensive studies using other cellular models and suitable animal models.


Assuntos
Dextranos , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Reparo do DNA
18.
J Bacteriol ; 193(7): 1653-62, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21278285

RESUMO

Oxidative stress occurs when the generation of reactive oxygen species (ROS) exceeds the capacity of the cell's endogenous systems to neutralize them. Our analyses of the cellular damage and oxidative stress responses of the archaeon Halobacterium salinarum exposed to ionizing radiation (IR) revealed a critical role played by nonenzymatic antioxidant processes in the resistance of H. salinarum to IR. ROS-scavenging enzymes were essential for resistance to chemical oxidants, yet those enzymes were not necessary for H. salinarum's resistance to IR. We found that protein-free cell extracts from H. salinarum provided a high level of protection for protein activity against IR in vitro but did not protect DNA significantly. Compared with cell extracts of radiation-sensitive bacteria, H. salinarum extracts were enriched in manganese, amino acids, and peptides, supporting an essential role in ROS scavenging for those small molecules in vivo. With regard to chemical oxidants, we showed that the damage caused by gamma irradiation was mechanistically different than that produced by hydrogen peroxide or by the superoxide-generating redox-cycling drug paraquat. The data presented support the idea that IR resistance is most likely achieved by a "metabolic route," with a combination of tightly coordinated physiological processes.


Assuntos
Antioxidantes/metabolismo , Halobacterium/metabolismo , Halobacterium/efeitos da radiação , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Meios de Cultura , Halobacterium/citologia , Mutação , Estresse Oxidativo , Radiação Ionizante , Espécies Reativas de Oxigênio
19.
J Proteome Res ; 10(8): 3802-13, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21619077

RESUMO

Oxidatively induced DNA damage is implicated in disease, unless it is repaired by DNA repair. Defects in DNA repair capacity may be a risk factor for various disease processes. Thus, DNA repair proteins may be used as early detection and therapeutic biomarkers in cancer and other diseases. For this purpose, the measurement of the expression level of these proteins in vivo will be necessary. We applied liquid chromatography/isotope-dilution tandem mass spectrometry (LC-MS/MS) for the identification and quantification of DNA repair proteins human 8-hydroxyguanine-DNA glycosylase (hOGG1) and Escherichia coli formamidopyrimidine DNA glycosylase (Fpg), which are involved in base-excision repair of oxidatively induced DNA damage. We overproduced and purified (15)N-labeled analogues of these proteins to be used as suitable internal standards to ensure the accuracy of quantification. Unlabeled and (15)N-labeled proteins were digested with trypsin and analyzed by LC-MS/MS. Numerous tryptic peptides of both proteins were identified on the basis of their full-scan mass spectra. These peptides matched the theoretical peptide fragments expected from trypsin digestion and provided statistically significant protein scores that would unequivocally identify these proteins. We also recorded the product ion spectra of the tryptic peptides and defined the characteristic product ions. Mixtures of the analyte proteins and their (15)N-labeled analogues were analyzed by selected-reaction monitoring on the basis of product ions. The results obtained suggest that the methodology developed would be highly suitable for the positive identification and accurate quantification of DNA repair proteins in vivo as potential biomarkers for cancer and other diseases.


Assuntos
Cromatografia Líquida/métodos , Reparo do DNA , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , DNA Glicosilases/metabolismo , Hidrólise , Dados de Sequência Molecular , Isótopos de Nitrogênio , Mapeamento de Peptídeos , Padrões de Referência
20.
Protein Expr Purif ; 78(1): 94-101, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21356311

RESUMO

Reduced DNA repair capacity is associated with increased risk for a variety of disease processes including carcinogenesis. Thus, DNA repair proteins have the potential to be used as important predictive, prognostic and therapeutic biomarkers in cancer and other diseases. The measurement of the expression level of these enzymes may be an excellent tool for this purpose. Mass spectrometry is becoming the technique of choice for the identification and quantification of proteins. However, suitable internal standards must be used to ensure the precision and accuracy of measurements. An ideal internal standard in this case would be a stable isotope-labeled analog of the analyte protein. In the present work, we over-expressed, purified and characterized two stable isotope-labeled DNA glycosylases, i.e., (15)N-labeled Escherichia coli formamidopyrimidine DNA glycosylase (Fpg) and (15)N-labeled human 8-oxoguanine-DNA glycosylase (hOGG1). DNA glycosylases are involved in the first step of the base excision repair of oxidatively induced DNA damage by removing modified DNA bases. The measurement by MALDI-ToF mass spectrometry of the molecular mass and isotopic purity proved the identity of the (15)N-labeled proteins and showed that the (15)N-labeling of both proteins was more than 99.7%. We also measured the DNA glycosylase activities using gas chromatography/mass spectrometry with isotope-dilution. The enzymic activities of both (15)N-labeled Fpg and (15)N-labeled hOGG1 were essentially identical to those of their respective unlabeled counterparts, ascertaining that the labeling did not perturb their catalytic sites. The procedures described in this work may be used for obtaining stable isotope-labeled analogs of other DNA repair proteins for mass spectrometric measurements of these proteins as disease biomarkers.


Assuntos
DNA Glicosilases/química , Reparo do DNA , DNA-Formamidopirimidina Glicosilase/química , Proteínas de Escherichia coli/química , Marcação por Isótopo/métodos , Proteínas Recombinantes/química , DNA Glicosilases/isolamento & purificação , DNA Glicosilases/metabolismo , DNA-Formamidopirimidina Glicosilase/isolamento & purificação , DNA-Formamidopirimidina Glicosilase/metabolismo , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Cinética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA