Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(6): 2219-2232, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38602250

RESUMO

Sugar beet (Beta vulgaris) is the major sugar-producing crop in Europe and Northern America, as the taproot stores sucrose at a concentration of around 20%. Genome sequence analysis together with biochemical and electrophysiological approaches led to the identification and characterization of the TST sucrose transporter driving vacuolar sugar accumulation in the taproot. However, the sugar transporters mediating sucrose uptake across the plasma membrane of taproot parenchyma cells remained unknown. As with glucose, sucrose stimulation of taproot parenchyma cells caused inward proton fluxes and plasma membrane depolarization, indicating a sugar/proton symport mechanism. To decipher the nature of the corresponding proton-driven sugar transporters, we performed taproot transcriptomic profiling and identified the cold-induced PMT5a and STP13 transporters. When expressed in Xenopus laevis oocytes, BvPMT5a was characterized as a voltage- and H+-driven low-affinity glucose transporter, which does not transport sucrose. In contrast, BvSTP13 operated as a high-affinity H+/sugar symporter, transporting glucose better than sucrose, and being more cold-tolerant than BvPMT5a. Modeling of the BvSTP13 structure with bound mono- and disaccharides suggests plasticity of the binding cleft to accommodate the different saccharides. The identification of BvPMT5a and BvSTP13 as taproot sugar transporters could improve breeding of sugar beet to provide a sustainable energy crop.


Assuntos
Beta vulgaris , Glucose , Proteínas de Plantas , Raízes de Plantas , Sacarose , Animais , Beta vulgaris/citologia , Beta vulgaris/genética , Beta vulgaris/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Glucose/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/genética , Oócitos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Prótons , Sacarose/metabolismo , Xenopus laevis
2.
New Phytol ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39238122

RESUMO

Malate and fumarate constitute a significant fraction of the carbon fixed by photosynthesis, and they are at the crossroad of central metabolic pathways. In Arabidopsis thaliana, they are transiently stored in the vacuole to keep cytosolic homeostasis. The malate and fumarate transport systems of the vacuolar membrane are key players in the control of cell metabolism. Notably, the molecular identity of these transport systems remains mostly unresolved. We used a combination of imaging, electrophysiology and molecular physiology to identify an important molecular actor of dicarboxylic acid transport across the tonoplast. Here, we report the function of the A. thaliana Aluminium-Activated Malate Transporter 5 (AtALMT5). We characterised its ionic transport properties, expression pattern, localisation and function in vivo. We show that AtALMT5 is expressed in photosynthetically active tissues and localised in the tonoplast. Patch-clamp and in planta analyses demonstrated that AtALMT5 is an ion channel-mediating fumarate loading of the vacuole. We found in almt5 plants a reduced accumulation of fumarate in the leaves, in parallel with increased malate concentrations. These results identified AtALMT5 as an ion channel-mediating fumarate transport in the vacuoles of mesophyll cells and regulating the malate/fumarate balance in Arabidopsis.

3.
New Phytol ; 239(6): 2225-2234, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37434346

RESUMO

Plant transpiration is controlled by stomata, with S- and R-type anion channels playing key roles in guard cell action. Arabidopsis mutants lacking the ALMT12/QUAC1 R-type anion channel function in guard cells show only a partial reduction in R-type channel currents. The molecular nature of these remaining R-type anion currents is still unclear. To further elucidate this, patch clamp, transcript and gas-exchange measurements were performed with wild-type (WT) and different almt mutant plants. The R-type current fraction in the almt12 mutant exhibited the same voltage dependence, susceptibility to ATP block and lacked a chloride permeability as the WT. Therefore, we asked whether the R-type anion currents in the ALMT12/QUAC1-free mutant are caused by additional ALMT isoforms. In WT guard cells, ALMT12, ALMT13 and ALMT14 transcripts were detected, whereas only ALMT13 was found expressed in the almt12 mutant. Substantial R-type anion currents still remained active in the almt12/13 and almt12/14 double mutants as well as the almt12/13/14 triple mutant. In good agreement, CO2 -triggered stomatal closure required the activity of ALMT12 but not ALMT13 or ALMT14. The results suggest that, with the exception of ALMT12, channel species other than ALMTs carry the guard cell R-type anion currents.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Ânions , Ácido Abscísico
5.
Curr Biol ; 26(16): 2213-20, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27397895

RESUMO

Higher plants take up nutrients via the roots and load them into xylem vessels for translocation to the shoot. After uptake, anions have to be channeled toward the root xylem vessels. Thereby, xylem parenchyma and pericycle cells control the anion composition of the root-shoot xylem sap [1-6]. The fact that salt-tolerant genotypes possess lower xylem-sap Cl(-) contents compared to salt-sensitive genotypes [7-10] indicates that membrane transport proteins at the sites of xylem loading contribute to plant salinity tolerance via selective chloride exclusion. However, the molecular mechanism of xylem loading that lies behind the balance between NO3(-) and Cl(-) loading remains largely unknown. Here we identify two root anion channels in Arabidopsis, SLAH1 and SLAH3, that control the shoot NO3(-)/Cl(-) ratio. The AtSLAH1 gene is expressed in the root xylem-pole pericycle, where it co-localizes with AtSLAH3. Under high soil salinity, AtSLAH1 expression markedly declined and the chloride content of the xylem sap in AtSLAH1 loss-of-function mutants was half of the wild-type level only. SLAH3 anion channels are not active per se but require extracellular nitrate and phosphorylation by calcium-dependent kinases (CPKs) [11-13]. When co-expressed in Xenopus oocytes, however, the electrically silent SLAH1 subunit gates SLAH3 open even in the absence of nitrate- and calcium-dependent kinases. Apparently, SLAH1/SLAH3 heteromerization facilitates SLAH3-mediated chloride efflux from pericycle cells into the root xylem vessels. Our results indicate that under salt stress, plants adjust the distribution of NO3(-) and Cl(-) between root and shoot via differential expression and assembly of SLAH1/SLAH3 anion channel subunits.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Canais Iônicos/genética , Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Canais Iônicos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Tolerância ao Sal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA