Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(44): e2314788120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871225

RESUMO

Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.


Assuntos
Azotobacter vinelandii , Metaloproteínas , Nitrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fixação de Nitrogênio/genética , Oxirredutases/metabolismo , Metaloproteínas/metabolismo , Proteínas de Bactérias/metabolismo
2.
J Am Chem Soc ; 146(1): 500-513, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38150413

RESUMO

The exchange coupling of electron spins can strongly influence the properties of chemical species. The regulation of this type of electronic coupling has been explored within complexes that have multiple metal ions but to a lesser extent in complexes that pair a redox-active ligand with a single metal ion. To bridge this gap, we investigated the interplay among the structural and magnetic properties of mononuclear Cu complexes and exchange coupling between a Cu center and a redox-active ligand over three oxidation states. The computational analysis of the structural properties established a relationship between the complexes' magnetic properties and a bonding interaction involving a dx2-y2 orbital of the Cu ion and π orbital of the redox-active ligand that are close in energy. The additional bonding interaction affects the geometry around the Cu center and was found to be influenced by intramolecular H-bonds introduced by the external ligands. The ability to synthetically tune the d-π interactions using H-bonds illustrates a new type of control over the structural and magnetic properties of metal complexes.

3.
Chem Rev ; 122(14): 11900-11973, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35849738

RESUMO

Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.


Assuntos
Hidrogenase , Aldeído Oxirredutases , Dióxido de Carbono/química , Formiato Desidrogenases/metabolismo , Hidrogenase/química , Complexos Multienzimáticos , Nitrogenase/metabolismo , Oxirredução
4.
Chembiochem ; 23(19): e202200384, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-35925843

RESUMO

Nitrogenase employs a sophisticated electron transfer system and a Mo-Fe-S-C cofactor, designated the M-cluster [(cit)MoFe7 S9 C]), to reduce atmospheric N2 to bioaccessible NH3 . Previously, we have shown that the cofactor-free form of nitrogenase can be repurposed as a protein scaffold for the incorporation of a synthetic Fe-S cluster [Fe6 S9 (SEt)2 ]4- . Here, we demonstrate the utility of an asymmetric Mo-Fe-S cluster [Cp*MoFe5 S9 (SH)]3- as an alternative artificial cofactor upon incorporation into the cofactor-free nitrogenase scaffold. The resultant semi-artificial enzyme catalytically reduces C2 H2 to C2 H4 , and CN- into short-chain hydrocarbons, yet it is clearly distinct in activity from its [Fe6 S9 (SEt)2 ]4- -reconstituted counterpart, pointing to the possibility to employ molecular design and cluster synthesis strategies to further develop semi-artificial or artificial systems with desired catalytic activities.


Assuntos
Hidrocarbonetos , Nitrogenase , Hidrocarbonetos/metabolismo , Nitrogenase/metabolismo , Oxirredução
5.
Chem Rev ; 120(12): 5107-5157, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32129988

RESUMO

Biological nitrogen fixation is catalyzed by the enzyme nitrogenase, which facilitates the cleavage of the relatively inert triple bond of N2. Nitrogenase is most commonly associated with the molybdenum-iron cofactor called FeMoco or the M-cluster, and it has been the subject of extensive structural and spectroscopic characterization over the past 60 years. In the late 1980s and early 1990s, two "alternative nitrogenase" systems were discovered, isolated, and found to incorporate V or Fe in place of Mo. These systems are regulated by separate gene clusters; however, there is a high degree of structural and functional similarity between each nitrogenase. Limited studies with the V- and Fe-nitrogenases initially demonstrated that these enzymes were analogously active as the Mo-nitrogenase, but more recent investigations have found capabilities that are unique to the alternative systems. In this review, we will discuss the reactivity, biosynthetic, and mechanistic proposals for the alternative nitrogenases as well as their electronic and structural properties in comparison to the well-characterized Mo-dependent system. Studies over the past 10 years have been particularly fruitful, though key aspects about V- and Fe-nitrogenases remain unexplored.


Assuntos
Nitrogenase/metabolismo , Modelos Moleculares , Molibdênio/química , Molibdênio/metabolismo , Nitrogênio/química , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nitrogenase/química
6.
Angew Chem Int Ed Engl ; 61(19): e202202271, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35218104

RESUMO

The Fe protein of nitrogenase plays multiple roles in substrate reduction and cluster maturation via its redox-active [Fe4 S4 ] cluster. Here we report the synthesis and characterization of a water-soluble [Fe4 Se4 ] cluster that is used to substitute the [Fe4 S4 ] cluster of the Azotobacter vinelandii Fe protein (AvNifH). Biochemical, EPR and XAS/EXAFS analyses demonstrate the ability of the [Fe4 Se4 ] cluster to adopt the super-reduced, all-ferrous state upon its incorporation into AvNifH. Moreover, these studies reveal that the [Fe4 Se4 ] cluster in AvNifH already assumes a partial all-ferrous state ([Fe4 Se4 ]0 ) in the presence of dithionite, where its [Fe4 S4 ] counterpart in AvNifH exists solely in the reduced state ([Fe4 S4 ]1+ ). Such a discrepancy in the redox properties of the AvNifH-associated [Fe4 Se4 ] and [Fe4 S4 ] clusters can be used to distinguish the differential redox requirements for the substrate reduction and cluster maturation of nitrogenase, pointing to the utility of chalcogen-substituted FeS clusters in future mechanistic studies of nitrogenase catalysis and assembly.


Assuntos
Azotobacter vinelandii , Proteínas Ferro-Enxofre , Proteínas Ferro-Enxofre/química , Nitrogenase/química , Oxirredução , Oxirredutases/química
7.
J Am Chem Soc ; 143(5): 2384-2393, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33528256

RESUMO

Dinuclear iron centers with a bridging hydroxido or oxido ligand form active sites within a variety of metalloproteins. A key feature of these sites is the ability of the protein to control the structures around the Fe centers, which leads to entatic states that are essential for function. To simulate this controlled environment, artificial proteins have been engineered using biotin-streptavidin (Sav) technology in which Fe complexes from adjacent subunits can assemble to form [FeIII-(µ-OH)-FeIII] cores. The assembly process is promoted by the site-specific localization of the Fe complexes within a subunit through the designed mutation of a tyrosinate side chain to coordinate the Fe centers. An important outcome is that the Sav host can regulate the Fe···Fe separation, which is known to be important for function in natural metalloproteins. Spectroscopic and structural studies from X-ray diffraction methods revealed uncommonly long Fe···Fe separations that change by less than 0.3 Å upon the binding of additional bridging ligands. The structural constraints imposed by the protein host on the di-Fe cores are unique and create examples of active sites having entatic states within engineered artificial metalloproteins.


Assuntos
Materiais Biomiméticos/química , Ferro/química , Metaloproteínas/metabolismo , Biotina/metabolismo , Modelos Moleculares , Conformação Molecular , Estreptavidina/metabolismo
8.
Chembiochem ; 22(1): 151-155, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32918851

RESUMO

Nitrogenase converts N2 to NH3 , and CO to hydrocarbons, at its cofactor site. Herein, we report a biochemical and spectroscopic characterization of a Mo-nitrogenase variant expressed in an Azotobacter vinelandii strain containing a deletion of nifV, the gene encoding the homocitrate synthase. Designated NifDKCit , the catalytic component of this Mo-nitrogenase variant contains a citrate-substituted cofactor analogue. Activity analysis of NifDKCit reveals a shift of CO reduction from H2 evolution toward hydrocarbon formation and an opposite shift of N2 reduction from NH3 formation toward H2 evolution. Consistent with a shift in the Mo K-edge energy of NifDKCit relative to that of its wild-type counterpart, EPR analysis demonstrates a broadening of the line-shape and a decrease in the intensity of the cofactor-originated S=3/2 signal, suggesting a change in the spin properties of the cofactor upon citrate substitution. These observations point to a crucial role of homocitrate in substrate reduction by nitrogenase and the possibility to tune product profiles of nitrogenase reactions via organic ligand substitution.


Assuntos
Ácido Cítrico/metabolismo , Metaloproteínas/metabolismo , Molibdênio/metabolismo , Nitrogenase/metabolismo , Azotobacter vinelandii/enzimologia , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Ácido Cítrico/química , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogênio/química , Hidrogênio/metabolismo , Metaloproteínas/química , Metaloproteínas/genética , Molibdênio/química , Nitrogenase/química , Nitrogenase/genética
9.
Angew Chem Int Ed Engl ; 60(5): 2364-2370, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035363

RESUMO

NifB is an essential radical SAM enzyme required for the assembly of an 8Fe core of the nitrogenase cofactor. Herein, we report the X-ray crystal structures of Methanobacterium thermoautotrophicum NifB without (apo MtNifB) and with (holo MtNifB) a full complement of three [Fe4 S4 ] clusters. Both apo and holo MtNifB contain a partial TIM barrel core, but unlike apo MtNifB, holo MtNifB is fully assembled and competent in cofactor biosynthesis. The radical SAM (RS)-cluster is coordinated by three Cys, and the adjacent K1- and K2-clusters, representing the precursor to an 8Fe cofactor core, are each coordinated by one His and two Cys. Prediction of substrate channels, combined with in silico docking of SAM in holo MtNifB, suggests the binding of SAM between the RS- and K2-clusters and putative paths for entry of SAM and exit of products of SAM cleavage, thereby providing important mechanistic insights into the radical SAM-dependent carbide insertion concomitant with cofactor core formation.


Assuntos
Cristalografia por Raios X/métodos , Nitrogenase/química , S-Adenosilmetionina/química , Modelos Moleculares , Estrutura Molecular
10.
Chembiochem ; 21(12): 1742-1748, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31747483

RESUMO

Nitrogenases catalyze the ambient reduction of N2 and CO at its cofactor site. Herein we present a biochemical and spectroscopic characterization of an Azotobacter vinelandii V nitrogenase variant expressing a citrate-substituted cofactor. Designated VnfDGKCit , the catalytic component of this V nitrogenase variant has an αß2 (δ) subunit composition and carries an 8Fe P* cluster and a citrate-substituted V cluster analogue in the αß dimer, as well as a 4Fe cluster in the "orphaned" ß-subunit. Interestingly, when normalized based on the amount of cofactor, VnfDGKCit shows a shift of N2 reduction from H2 evolution toward NH3 formation and an opposite shift of CO reduction from hydrocarbon formation toward H2 evolution. These observations point to a role of the organic ligand in proton delivery during catalysis and imply the use of different reaction sites/mechanisms by nitrogenase for different substrate reductions. Moreover, the increased NH3 /H2 ratio upon citrate substitution suggests the possibility to modify the organic ligand for improved ammonia synthesis in the future.


Assuntos
Azotobacter vinelandii/enzimologia , Proteínas de Bactérias/metabolismo , Ácido Cítrico/metabolismo , Nitrogenase/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Espectroscopia de Ressonância de Spin Eletrônica , Nitrogenase/química , Nitrogenase/genética , Conformação Proteica
11.
Chem Rev ; 118(5): 2554-2592, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29400961

RESUMO

A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.


Assuntos
Ferro/química , Oxirredutases/metabolismo , Oxigênio/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Oxirredução , Oxirredutases/química , Oxigênio/química , Espectroscopia por Absorção de Raios X
12.
Angew Chem Int Ed Engl ; 59(17): 6887-6893, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32022452

RESUMO

NifEN plays a crucial role in the biosynthesis of nitrogenase, catalyzing the final step of cofactor maturation prior to delivering the cofactor to NifDK, the catalytic component of nitrogenase. The difficulty in expressing NifEN, a complex, heteromultimeric metalloprotein sharing structural/functional homology with NifDK, is a major challenge in the heterologous expression of nitrogenase. Herein, we report the expression and engineering of Azotobacter vinelandii NifEN in Escherichia coli. Biochemical and spectroscopic analyses demonstrate the integrity of the heterologously expressed NifEN in composition and functionality and, additionally, the ability of an engineered NifEN variant to mimic NifDK in retaining the matured cofactor at an analogous cofactor-binding site. This is an important step toward piecing together a viable pathway for the heterologous expression of nitrogenase and identifying variants for the mechanistic investigation of this enzyme.


Assuntos
Proteínas de Bactérias/genética , Coenzimas/biossíntese , Engenharia Genética , Nitrogenase/metabolismo , Azotobacter vinelandii/genética , Expressão Gênica
13.
Angew Chem Int Ed Engl ; 58(41): 14703-14707, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31411369

RESUMO

Nitrogenases catalyze the reduction of N2 to NH4+ at its cofactor site. Designated the M-cluster, this [MoFe7 S9 C(R-homocitrate)] cofactor is synthesized via the transformation of a [Fe4 S4 ] cluster pair into an [Fe8 S9 C] precursor (designated the L-cluster) prior to insertion of Mo and homocitrate. We report the characterization of an eight-iron cofactor precursor (designated the L*-cluster), which is proposed to have the composition [Fe8 S8 C] and lack the "9th sulfur" in the belt region of the L-cluster. Our X-ray absorption and electron spin echo envelope modulation (ESEEM) analyses strongly suggest that the L*-cluster represents a structural homologue to the l-cluster except for the missing belt sulfur. The absence of a belt sulfur from the L*-cluster may prove beneficial for labeling the catalytically important belt region, which could in turn facilitate investigations into the reaction mechanism of nitrogenases.


Assuntos
Coenzimas/química , Nitrogenase/metabolismo , Análise Espectral/métodos , Enxofre/química , Modelos Moleculares , Estrutura Molecular , Nitrogenase/química , Espectroscopia por Absorção de Raios X
14.
Nat Prod Rep ; 35(7): 646-659, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29552683

RESUMO

Covering: up to 2017 The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes ß-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-ß-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase. CmlA couples O2 activation and substrate hydroxylation via a structural change caused by formation of the l-PAPA-loaded CmlP:CmlA complex. The other new diiron family is typified by two enzymes, AurF and CmlI, which catalyze conversion of aryl-amine substrates to aryl-nitro products with incorporation of oxygen from O2. AurF from Streptomyces thioluteus catalyzes the formation of p-nitrobenzoate from p-aminobenzoate as a precursor to the biostatic compound aureothin, whereas CmlI from S. venezuelae catalyzes the ultimate aryl-amine to aryl-nitro step in chloramphenicol biosynthesis. Both enzymes stabilize a novel type of peroxo-intermediate as the reactive species. The rare 6-electron N-oxygenation reactions of CmlI and AurF involve two progressively oxidized pathway intermediates. The enzymes optimize efficiency by utilizing one of the reaction pathway intermediates as an in situ reductant for the diiron cluster, while simultaneously generating the next pathway intermediate. For CmlI, this reduction allows mid-pathway regeneration of the peroxo intermediate required to complete the biosynthesis. CmlI ensures specificity by carrying out the multistep aryl-amine oxygenation without dissociating intermediate products.


Assuntos
Produtos Biológicos/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Cloranfenicol/biossíntese , Cristalografia por Raios X , Cinética , Oxigênio/metabolismo , Oxigenases/química , Oxigenases/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/metabolismo , Conformação Proteica
15.
J Biol Inorg Chem ; 23(1): 155-165, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29218640

RESUMO

Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of FeIII-O-CrIII and FeIII-O-MnIII complexes is described herein. The latter complexes may serve as models for the FeIII-X-MnIII active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The FeIII-O-CrIII complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with FeIII-O-FeIII complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the FeIII-O-MnIII complexes resemble FeIII-O-FeIII complexes more closely. Resonance Raman characterization of the FeIII-O-MIII complexes reveals an 18O-sensitive vibration in the range of 760-890 cm-1. This feature has been assigned to the asymmetric FeIII-O-MIII stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the FeIII-O-MnIII complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.


Assuntos
Complexos de Coordenação/química , Compostos de Ferro/química , Ferro/química , Manganês/química , Domínio Catalítico , Cromo/química , Complexos de Coordenação/síntese química , Compostos de Ferro/síntese química , Ligantes , Estrutura Molecular , Ribonucleotídeo Redutases/química
16.
J Am Chem Soc ; 139(30): 10472-10485, 2017 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-28673082

RESUMO

The final step in the biosynthesis of the antibiotic chloramphenicol is the oxidation of an aryl-amine substrate to an aryl-nitro product catalyzed by the N-oxygenase CmlI in three two-electron steps. The CmlI active site contains a diiron cluster ligated by three histidine and four glutamate residues and activates dioxygen to perform its role in the biosynthetic pathway. It was previously shown that the active oxidant used by CmlI to facilitate this chemistry is a peroxo-diferric intermediate (CmlIP). Spectroscopic characterization demonstrated that the peroxo binding geometry of CmlIP is not consistent with the µ-1,2 mode commonly observed in nonheme diiron systems. Its geometry was tentatively assigned as µ-η2:η1 based on comparison with resonance Raman (rR) features of mixed-metal model complexes in the absence of appropriate diiron models. Here, X-ray absorption spectroscopy (XAS) and rR studies have been used to establish a refined structure for the diferric cluster of CmlIP. The rR experiments carried out with isotopically labeled water identified the symmetric and asymmetric vibrations of an Fe-O-Fe unit in the active site at 485 and 780 cm-1, respectively, which was confirmed by the 1.83 Å Fe-O bond observed by XAS. In addition, a unique Fe···O scatterer at 2.82 Å observed from XAS analysis is assigned as arising from the distal O atom of a µ-1,1-peroxo ligand that is bound symmetrically between the irons. The (µ-oxo)(µ-1,1-peroxo)diferric core structure associated with CmlIP is unprecedented among diiron cluster-containing enzymes and corresponding biomimetic complexes. Importantly, it allows the peroxo-diferric intermediate to be ambiphilic, acting as an electrophilic oxidant in the initial N-hydroxylation of an arylamine and then becoming a nucleophilic oxidant in the final oxidation of an aryl-nitroso intermediate to the aryl-nitro product.


Assuntos
Compostos Férricos/metabolismo , Oxigenases/metabolismo , Peróxidos/metabolismo , Compostos Férricos/química , Humanos , Estrutura Molecular , Oxigenases/química , Peróxidos/química , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
17.
Inorg Chem ; 56(11): 6352-6361, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28481521

RESUMO

In this report we compare the geometric and electronic structures and reactivities of [FeV(O)]- and [FeIV(O)]2- species supported by the same ancillary nonheme biuret tetraamido macrocyclic ligand (bTAML). Resonance Raman studies show that the Fe═O vibration of the [FeIV(O)]2- complex 2 is at 798 cm-1, compared to 862 cm-1 for the corresponding [FeV(O)]- species 3, a 64 cm-1 frequency difference reasonably reproduced by density functional theory calculations. These values are, respectively, the lowest and the highest frequencies observed thus far for nonheme high-valent Fe═O complexes. Extended X-ray absorption fine structure analysis of 3 reveals an Fe═O bond length of 1.59 Å, which is 0.05 Å shorter than that found in complex 2. The redox potentials of 2 and 3 are 0.44 V (measured at pH 12) and 1.19 V (measured at pH 7) versus normal hydrogen electrode, respectively, corresponding to the [FeIV(O)]2-/[FeIII(OH)]2- and [FeV(O)]-/[FeIV(O)]2- couples. Consistent with its higher potential (even after correcting for the pH difference), 3 oxidizes benzyl alcohol at pH 7 with a second-order rate constant that is 2500-fold bigger than that for 2 at pH 12. Furthermore, 2 exhibits a classical kinteic isotope effect (KIE) of 3 in the oxidation of benzyl alcohol to benzaldehyde versus a nonclassical KIE of 12 for 3, emphasizing the reactivity differences between 2 and 3.

18.
Biochemistry ; 55(41): 5818-5831, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27668828

RESUMO

The first step in the nonribosomal peptide synthetase (NRPS)-based biosynthesis of chloramphenicol is the ß-hydroxylation of the precursor l-p-aminophenylalanine (l-PAPA) catalyzed by the monooxygenase CmlA. The active site of CmlA contains a dinuclear iron cluster that is reduced to the diferrous state (WTR) to initiate O2 activation. However, rapid O2 activation occurs only when WTR is bound to CmlP, the NRPS to which l-PAPA is covalently attached. Here the X-ray crystal structure of WTR is reported, which is very similar to that of the as-isolated diferric enzyme in which the irons are coordinately saturated. X-ray absorption spectroscopy is used to investigate the WTR cluster ligand structure as well as the structures of WTR in complex with a functional CmlP variant (CmlPAT) with and without l-PAPA attached. It is found that formation of the active WTR:CmlPAT-l-PAPA complex converts at least one iron of the cluster from six- to five-coordinate by changing a bidentately bound amino acid carboxylate to monodentate on Fe1. The only bidentate carboxylate in the structure of WTR is E377. The crystal structure of the CmlA variant E377D shows only monodentate carboxylate coordination. Reduced E377D reacts rapidly with O2 in the presence or absence of CmlPAT-l-PAPA, showing loss of regulation. However, this variant fails to catalyze hydroxylation, suggesting that E377 has the dual role of coupling regulation of O2 reactivity with juxtaposition of the substrate and the reactive oxygen species. The carboxylate shift in response to substrate binding represents a novel regulatory strategy for oxygen activation in diiron oxygenases.


Assuntos
Ácidos Carboxílicos/química , Ferro/química , Oxigenases de Função Mista/química , Oxigênio/química , Peptídeo Sintases/química , Cristalografia por Raios X , Cinética , Especificidade por Substrato , Espectroscopia por Absorção de Raios X
19.
J Biol Inorg Chem ; 21(5-6): 605-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27380180

RESUMO

Human deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E. coli affords enzyme that is blue in color, a feature that has been associated with the presence of a peroxo-bridged diiron(III) active site. To gain further insight into the nature of the diiron site and how it may change as hDOHH goes through the catalytic cycle, we have conducted X-ray absorption spectroscopic studies of hDOHH on five samples that represent different species along its reaction pathway. Structural analysis of each species has been carried out, starting with the reduced diferrous state, proceeding through its O2 adduct, and ending with a diferric decay product. Our results show that the Fe⋯Fe distances found for the five samples fall within a narrow range of 3.4-3.5 Å, suggesting that hDOHH has a fairly constrained active site. This pattern differs significantly from what has been associated with canonical dioxygen activating nonheme diiron enzymes, such as soluble methane monooxygenase and Class 1A ribonucleotide reductases, for which the Fe⋯Fe distance can change by as much as 1 Å during the redox cycle. These results suggest that the O2 activation mechanism for hDOHH deviates somewhat from that associated with the canonical nonheme diiron enzymes, opening the door to new mechanistic possibilities for this intriguing family of enzymes.


Assuntos
Oxigenases de Função Mista/química , Fatores de Iniciação de Peptídeos/química , Proteínas de Ligação a RNA/química , Humanos , Oxigenases de Função Mista/metabolismo , Modelos Moleculares , Conformação Molecular , Oxigênio/química , Oxigênio/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Espectroscopia por Absorção de Raios X , Fator de Iniciação de Tradução Eucariótico 5A
20.
J Am Chem Soc ; 137(10): 3478-81, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25743366

RESUMO

The apparent Sc(3+) adduct of [Fe(IV)(O)(TMC)](2+) (1, TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane) has been synthesized in amounts sufficient to allow its characterization by various spectroscopic techniques. Contrary to the earlier assignment of a +4 oxidation state for the iron center of 1, we establish that 1 has a high-spin iron(III) center based on its Mössbauer and EPR spectra and its quantitative reduction by 1 equiv of ferrocene to [Fe(II)(TMC)](2+). Thus, 1 is best described as a Sc(III)-O-Fe(III) complex, in agreement with previous DFT calculations (Swart, M. Chem. Commun. 2013, 49, 6650.). These results shed light on the interaction of Lewis acids with high-valent metal-oxo species.


Assuntos
Compostos Férricos/química , Ferro/química , Oxigênio/química , Escândio/química , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Espectroscopia de Mossbauer
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA