Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt B): 113337, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35469857

RESUMO

Herein, we report a bacteria-based strategy as an efficient, reasonable, benign, and promising methodology for remediating heavy metals fed waterbodies. The contemporary study deals with isolating, screening, and characterizing heavy metal resistive bacteria from metal-rich sites. The transcriptome analysis reveals the identity of the isolated species as Bacillus pumilus and Bacillus cereus. Batch studies put forth the bioremoval results in designed conditions of different pH, concentration, dose, and time. The mechanistic actions are drawn using complementary techniques such as Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The theory of surface adsorption of lead (Pb(II)) and nickel (Ni(II)) is further fostered by the application of adsorption isotherms. The conducted studies establish the bacterial morphological stratagems and multifarious biochemical approaches for countering metallic ions of Pb(II) and Ni(II). The exhibition of significant removal results by the isolated bacterial strains in simulated water samples with remarkable proliferation rates has opened up its favorability for industrial platforms.


Assuntos
Bacillus pumilus , Metais Pesados , Poluentes Químicos da Água , Adsorção , Bacillus cereus/genética , Concentração de Íons de Hidrogênio , Íons , Cinética , Chumbo , Metais Pesados/química , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/química
2.
Environ Res ; 180: 108857, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31727340

RESUMO

Heterostructured α-Bismuth zinc oxide (α-Bi2O3-ZnO) photocatalyst was fabricated by a facile and cost-effective, ultrasound assisted chemical precipitation method followed by hydrothermal growth technique. As synthesized α-Bi2O3-ZnO photocatalyst showed enhanced photocatalytic performance for the MB dye degradation in contrast to pure ZnO and α-Bi2O3. Light emitting diodes (UV-LED) were used in the experimental setup, which has several advantages over conventional lamps like wavelength selectivity, high efficacy, less power consumption, long lifespan, no disposal problem, no warming-up time, compactness, easy and economic installation. XRD study confirmed the presence of both the lattice phases i.e. monoclinic and hexagonal wurtzite phase corresponding to α-Bi2O3 and ZnO in the α-Bi2O3-ZnO composite photocatalyst. FESEM images showed that α-Bi2O3-ZnO photocatalyst is composed of dumbbell like structures of ZnO with breadth ranging 4-5 µm and length ranging from 10 to 11 µm respectively. It was observed that α-Bi2O3 nanoparticles were attached on the ZnO surface and were in contact with each other. Low recombination rate of photo-induced electron-hole pairs, due to the migration of electrons and holes between the photocatalyst could be responsible for the 100% photocatalytic efficiency of α-Bi2O3-ZnO composite. In addition, photocatalyst was also observed to show the excellent antimicrobial activity with 1.5 cm zone of inhibition for 1 mg L-1 dose, against the human pathogenic bacteria (S. aureus).


Assuntos
Anti-Infecciosos , Azul de Metileno , Óxido de Zinco , Bismuto , Catálise , Staphylococcus aureus , Zinco
3.
Sci Total Environ ; 872: 161960, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36739026

RESUMO

Nanostructured oxides and oxyhydroxides of iron are imperative constituents of the Earth's geological and biological processes i.e. biogeochemical cycles. So, the characteristic applications of iron oxide nanoparticles (FeONps) are closely linked to their surroundings and biological sinks. This work reports a low-cost green approach to promote 'waste-to-wealth' ideology by the direct and self-catalysis of iron rust into its nanoparticles (N-FeONps). A comparison is drawn based on the properties, morphologies, and applications after synthesizing FeONps by chemical precipitation method (C-FeONps). Spherical nanoparticles with vibrational properties are obtained in the size domain of 32 nm (N-FeONps) and 23 nm (C-FeONps). The application of Uniform deformation model, Uniform stress deformation model, Uniform deformation energy density model, and Size-strain plot models reveal comparatively greater defects in the crystal structures of C-FeONps. The biosafety profiling of natural and chemically designed nano-units performed on the species of bacteria, fungus, algae, and plants have shown enhanced safety terms associated with N-FeONps. The performance of N-FeONps has surpassed its chemical counterpart in medical applications such as antioxidant activity and anti-inflammatory activity with approximate percentages of 26 % and 51 % respectively. The findings of this piece of work favors the naturally obtained FeONps (N-FeONps), as they are economically viable, non-toxic, and have a greater antioxidant and anti-inflammatory arena. Hence, this waste-to-wealth ideology should be promoted for maintaining waste and designing solutions for the medical industries in one go.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Compostos Férricos/química , Monitoramento Biológico , Nanopartículas Metálicas/química , Ferro/química , Antioxidantes , Óxidos , Medição de Risco
4.
Chemosphere ; 278: 130366, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33831687

RESUMO

The ecological toxicity imparted by non-biodegradable organic dyes has been considered as a major risk to handle in front of mankind. In this view, the low-cost zinc oxide nanoparticles (ZnO-NPs) were facially synthesized by coating the surface with surfactant (CTAB) and ionic liquid (BMTF) molecules for the effective removal of Eriochrome Black T (EBT) from aqueous media. Various advanced characterization techniques have given insight into the morphological features, crystalline structure and physio-chemical properties of as-synthesized ZnO-NPs. The systematic analysis of the adsorption isotherms and kinetics models specifies that the adsorption of EBT follow Freundlich model and pseudo-second-order kinetics. The intraparticle diffusion model displayed a linear relationship (R2 = 0.98, 0.97 and 0.94 for BMTF@ZnO, CTAB@ZnO and bare ZnO-NPs), which shows that pore diffusion rate is affected by surface modification and effects the overall EBT adsorption process. Furthermore, after the removal of 87% and 84% of EBT dye by BMTF@ZnO-NPs and CTAB@ZnO-NPs, the fabricated nanoadsorbents of ZnO were successfully regenerated and reused after the treatments up to four times. The adsorption aptitude of ZnO-NPs towards EBT dye was systematically explored in real wastewater samples and interference study of inorganic metallic salts was also performed. The toxicity estimations of the treated dye solutions were made using floral and fungal activities, to ascertain their non-toxic nature before releasing into the environment. These outcomes have supported the immense potential of ZnO-NPs towards the removal of EBT in a cost effective manner.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Adsorção , Compostos Azo , Cinética , Óxidos , Poluentes Químicos da Água/análise
5.
Chemosphere ; 282: 130871, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34119728

RESUMO

The release of untreated wastewater containing biotoxic substances in the form of heavy metals is one of the most crucial environmental and health challenges faced by our community. The recent advances in microbes derived removal has propelled bioremediation as a better and effective alternative to conventional techniques. Present study investigates the detoxification mechanisms evolved by the nickel (Ni(II)) resistant fungal strains, isolated from the industrial drain sites. The molecular detailing of the isolated fungal isolates confirms their identity as Neurospora crassa and Aspergillus flavus. Laboratory-scale experiments have established influence of different ranges of dose, pH, time, and metal concentration on the removal and uptake trends. Further, the variations in the carbon and nitrogen sources and agitation conditions has revealed the best substratum for achieving optimum results for the industrial exploitation of these microbes. SEM micrographs and FTIR spectra elucidates the superficial alterations on the mycelium of the fungal isolates and the involvement of active functional groups in the bioremediation of Ni(II) respectively. Biosorption of Ni(II) on living biomass has followed the Langmuir adsorption model. The findings of the study have provided a promising insight in the simultaneous action of different mechanistic removal approaches to explore a large scale removal of Ni(II) from the waste generating industries.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Biodegradação Ambiental , Biomassa , Concentração de Íons de Hidrogênio , Cinética , Níquel , Águas Residuárias
6.
Chemosphere ; 276: 130018, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33714881

RESUMO

In this work, interactions of diverse fungal species by the manipulation of cell concentrations has been utilized as the driving feature for the removal of hazardous multi-metals from the aqueous solutions. This study is focused on the exploitation of internal structures of microbes as a repository of lead (Pb(II)) and nickel (Ni(II)). For the concerned purpose 24 heavy metal resistant fungi are isolated from different industrial waste sites to form different microbial combinations as a single unit 'consortia' for achieving highest possible removal rates. Polymerase chain reaction and DNA sequencing are involved for the biochemical characterization and phylogenetic analysis of the screened isolates. The identification and screening studies reveal isolated strains as two Pb resistant fungi viz. K1SF-Pb15 (Aspergillus terreus) and SEF-Pb (Talaromyces islandicus) which have shown metal removal up to 93% and two Ni(II) tolerant fungal isolates namely, MEF-Ni-11 (Neurospora crassa) and Ni-1 (Aspergillus flavus) with removal efficiency of more than 91%. Relationship has been validated between the biosorption capacity and efficiency of the novel consortium under the influence of variable pH, time duration, initial concentration of Pb(II) and Ni(II), and inoculum size which has led to the foundation of effective and economical parameters for its exploitation in practical fields. The fungal consortia when applied on various industrial effluents has exhibited more than 95% of removal for both Pb(II) and Ni(II) simultaneously. The detailed mechanistic insight has shown the involvement of physical, chemical and ionic forces for the removal of heavy metals. So the designed novel multi-biological combined system acted as a repository for Pb(II) and Ni(II) ions with a greater potential which can be guided by the mechanistic methodology for the retrieval and remediation of multiple heavy metals from the real waste water samples.


Assuntos
Cádmio , Metais Pesados , Adsorção , Aspergillus , Concentração de Íons de Hidrogênio , Filogenia , Talaromyces
7.
Chemosphere ; 257: 127060, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32505945

RESUMO

The aim of the present work is to evaluate the ability of 'fungi' for the biodegradation of recalcitrant xenobiotic compound, 'Atrazine' in batch liquid cultures. Different parameters like pH (2.0-8.0) temperature (16-32 °C), biomass (1-5 g), and concentration (25-100 ppm) were optimized for the efficient degradation of atrazine. The decomposition behavior of atrazine is analyzed with the help of Fourier Transform Infrared (FTIR) spectroscopy. Herein, we have reported that the Bjerkandera adusta possess high removal efficiency of the xenobiotic compound (atrazine) up to 92%. The fungal strain investigated could prove to be a valuable active pesticide degrading micro-organism, with high detoxification values. These results are useful for improved understanding and prediction of the behavior and fate of B. adusta in the bio-purification of wastewater contaminated with xenobiotics. Thus providing a new and green approach for the remediation of toxicants without altering the environmental components.


Assuntos
Atrazina/metabolismo , Coriolaceae/fisiologia , Xenobióticos/metabolismo , Biodegradação Ambiental , Biomassa , Coriolaceae/metabolismo , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA