Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(7): 5441-5466, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37029254

RESUMO

Water, forages, and soil contamination with potentially toxic metals (PTMs) through anthropogenic activities has become a significant environmental concern. It is crucial to find out the level of PTMs in water, soil, and forages near industrial areas. The PTMs enter the body of living organisms through these sources and have become a potential risk for humans and animals. Therefore, the present study aims at the health risk assessment of PTMs and their accumulation in soil, water, and forages of three tehsils (Kallar Kahar, Choa Saidan Shah, and Chakwal) in district Chakwal. Samples of wastewater, soil, and forages were collected from various sites of district Chakwal. PTMs detected in the present study were cadmium (Cd), chromium (Cr), lead (Pb), zinc (Zn), cobalt (Co), copper (Cu), and nickel (Ni), and their levels were measured through atomic absorption spectrophotometer (AAs GF95 graphite furnace auto sampler). Pollution load index (PLI), bio concentration factor (BCF), soil enrichment factors (EF), daily intake value (DIM), and health risk index (HRI) in sheep, cow, and buffalo were also analyzed. The results revealed that the mean concentration (mg/L) of Cd (0.72-0.91 mg/L), Cr (1.84-2.23 mg/L), Pb (0.95-3.22 mg/L), Co (0.74-2.93 mg/L), Cu (0.84-1.96 mg/L), and Ni (1.39-4.39 mg/L) in wastewater samples was higher than permissible limits set by WHO, NEQS, WWF, USEPA, and Pakistan in all three tehsils of district Chakwal. Similarly, in soil samples, concentrations of Cd (1.21-1.95 mg/kg), Cr (38.1-56.4 mg/kg), and Ni (28.3-55.9 mg/kg) were higher than their respective threshold values. The mean concentration of PTMs in forage samples (Parthenium hysterophorus, Mentha spicata, Justicia adhatoda, Calotropis procera, Xanthium strumarium, Amaranthaceae sp.) showed that maximum values of Cd (5.35-7.55 mg/kg), Cr (5.47-7.51 mg/kg), Pb (30-36 mg/kg), and Ni (12.6-57.5 mg/kg) were beyond their safe limit set for forages. PLI, BCF, and EF were > 1.0 for almost all the PTMs. The DIM and HRI for sheep were less than < 1.0 but for cows and buffalo were > 1.0. The current study showed that soil, water, and forages near coal mines area are contaminated with PTMs which enter the food chain and pose significant harm to humans and animals. In order to prevent their dangerous concentration in the food chain, regular assessment of PTMs present in soil, forages, irrigating water, and food is recommended.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Poluição Ambiental , Metais Pesados , Animais , Humanos , Bioacumulação , Búfalos , Cádmio , Cromo , Carvão Mineral , Cobalto , Monitoramento Ambiental/métodos , Chumbo , Metais Pesados/toxicidade , Metais Pesados/análise , Níquel , Paquistão , Medição de Risco , Ovinos , Solo , Poluentes do Solo/toxicidade , Poluentes do Solo/análise , Águas Residuárias , Água , Exposição Ambiental/estatística & dados numéricos , Poluição Ambiental/estatística & dados numéricos , Poluentes Ambientais/análise
2.
World J Microbiol Biotechnol ; 39(6): 141, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37000294

RESUMO

Widespread and inadequate use of Monocrotophos has led to several environmental issues. Biodegradation is an ecofriendly method used for detoxification of toxic monocrotophos. In the present study, Msd2 bacterial strain was isolated from the cotton plant growing in contaminated sites of Sahiwal, Pakistan. Msd2 is capable of utilizing the monocrotophos (MCP) organophosphate pesticide as its sole carbon source for growth. Msd2 was identified as Brucella intermedia on the basis of morphology, biochemical characterization and 16S rRNA sequencing. B. intermedia showed tolerance of MCP up to 100 ppm. The presence of opd candidate gene for pesticide degradation, gives credence to B. intermedia as an effective bacterium to degrade MCP. Screening of the B. intermedia strain Msd2 for plant growth promoting activities revealed its ability to produce ammonia, exopolysaccharides, catalase, amylase and ACC-deaminase, and phosphorus, zinc and potassium solubilization. The optimization of the growth parameters (temperatures, shaking rpm, and pH level) of the MCP-degrading isolate was carried out in minimal salt broth supplemented with MCP. The optimal pH, temperature, and rpm for Msd2 growth were observed as pH 6, 35 °C, and 120 rpm, respectively. Based on optimization results, batch degradation experiment was performed. Biodegradation of MCP by B. intermedia was monitored using HPLC and recorded 78% degradation of MCP at 100 ppm concentration within 7 days of incubation. Degradation of MCP by Msd2 followed the first order reaction kinetics. Plant growth promoting and multi-stress tolerance ability of Msd2 was confirmed by molecular analysis. It is concluded that Brucella intermedia strain Msd2 could be beneficial as potential biological agent for an effective bioremediation for polluted environments.


Assuntos
Brucella , Monocrotofós , Praguicidas , Monocrotofós/química , Monocrotofós/metabolismo , Biodegradação Ambiental , Gossypium/genética , Gossypium/metabolismo , RNA Ribossômico 16S/genética , Brucella/genética , Brucella/metabolismo , Microbiologia do Solo
3.
Appl Microbiol Biotechnol ; 106(12): 4353-4365, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35705747

RESUMO

Zearalenone (ZEN) contamination of various foods and feeds is an important global problem. In some animals and humans, ZEN causes significant health issues in addition to massive economic losses, annually. Therefore, removal or degradation of the ZEN in foods and feeds is required to be done. The conventional physical and chemical methods have some serious issues including poor efficiency, decrease in nutritional value, palatability of feed, and use of costly equipment. Research examined microbes from diverse media for their ability to degrade zearalenone and other toxins, and the findings of several investigations revealed that enzymes produced from microbes play a significant role in the degradation of mycotoxins. In established bacterial hosts, genetically engineered technique was used to enhance heterologously produced degrading enzymes. Then, the bio-degradation of ZEN by the use of micro-organisms or their enzymes is much more advantageous and is close to nature and ecofriendly. Furthermore, an effort is made to put forward the work done by different scientists on the biodegradation of ZEN by the use of fungi, yeast, bacteria, and/or their enzymes to degrade the ZEN to non-toxic products. KEY POINTS: •Evolved microbial strains degraded ZEA more quickly •Different degrading properties were studied.


Assuntos
Micotoxinas , Zearalenona , Animais , Alimentos , Contaminação de Alimentos , Micotoxinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Zearalenona/metabolismo
4.
Physiol Mol Biol Plants ; 28(6): 1175-1190, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910447

RESUMO

Zinc oxide nano particles (ZnO NPs) have been employed as a novel strategy to regulate plant tolerance and alleviate heavy metal stress, but our scanty knowledge regarding the systematic role of ZnO NPs to ameliorate chromium (Cr) stress especially in rice necessitates an in-depth investigation. An experiment was performed to evaluate the effect of different concentrations of ZnO NPs (e.g., 0, 25, 50, 100 mg/L) in ameliorating the Cr toxicity and accumulation in rice seedlings in hydroponic system. Our results demonstrated that Cr (100 µM) severely inhibited the rice seedling growth, whereas exogenous treatment of ZnO NPs significantly alleviated Cr toxicity stress and promoted the plant growth. Moreover, application of ZnO NPs significantly augmented the germination energy, germination percentage, germination index, and vigor index. In addition, biomass accumulation, antioxidants (SOD, CAT, POD), nutrient acquisition (Zn, Fe) was also improved in ZnO NPs-treated plants, while the lipid peroxidation (MDA, H2O2), electrolyte leakage as well as Cr uptake and in-planta accumulation was significantly decreased. The burgeoning effects were more apparent at ZnO NPs (100 mg/L) suggesting the optimum treatment to ameliorate Cr induced oxidative stress in rice plants. Furthermore, the treatment of ZnO NPs (100 mg/L) reduced the level of endogenous abscisic acid (ABA) and stimulated the growth regulator hormones such as brassinosteroids (BRs) possibly linked with enhanced phytochelatins (PCs) levels. The ultrastructure analysis at cellular level of rice revealed that the application of 100 mg/L ZnO NPs protected the chloroplast integrity and other cell organells via improvement in plant ionomics, antioxidant activities and down regulating Cr induced oxidative stress in rice plants. Conclusively, observations of the current study will be helpful in developing stratigies to decrease Cr contamination in food chain by employing ZnO NPs and to mitigate the drastic effects of Cr in plants for the sustainable crop growth.

5.
Ecotoxicol Environ Saf ; 208: 111584, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396107

RESUMO

Cadmium (Cd) is highly toxic for plant metabolic processes even in low concentration due to higher retention rates, longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of Cd tolerant PGPR, Serratia sp. CP-13 together with two differentially Cd tolerant maize cultivars (MMRI-Yellow, Sahiwal-2002) selected amongst ten cultivars after screening. The maize cultivars were grown under different Cd treatments (0, 6, 12, 18, 24, 30 µM) in Petri plates both with and without Serratia sp. CP-13 inoculation. Treated plants were analyzed for their biomass accumulation, chlorophylls, carotenoids, proline, anthocyanin, protein, malondialdehyde (MDA), H2O2 as well as for antioxidants (POD, SOD, CAT) and mineral elements (Ca, Mg, Zn, K, Fe, Na, Cd). The maize cultivar MMRI-Yellow (tolerant) and Sahiwal-2002 (sensitive) exhibited significant reduction in leaf area, nutrient contents, plant biomass, activity of antioxidants, total proteins, photosynthetic pigments as well as flavonoids with increased production of H2O2, proline, MDA and relative membrane permeability (RMP) under Cd stress. However, this reduction was cultivar specific and recorded higher in cv. Sahiwal-2002 as compared to MMRI-Yellow. Application of Serratia sp. CP-13 significantly augmented plant biomass, photosynthetic pigments, antioxidative machinery, as well as flavonoids and proline while diminishing H2O2, RMP MDA production even under Cd stress in studied cultivars. Furthermore, CP-13 inoculation assisted the Cd stressed plants to sustain an optimal level of essential nutrients (Ca, Mg, Zn, K, Fe) except for Na and Cd which responded antagonistically. It was inferred that both inoculated maize cultivars exhibited better health and metabolism but substantial Cd tolerance was acquired by the sensitive cv. Sahiwal-2002 than the tolerant cv. MMRI-Yellow under applied Cd regimes. Furthermore, studied maize cultivars depicted maximum Cd tolerance in order of 30 < 24 < 18 < 12 < 6 < 0 µM Cd treatments under Serratia sp. CP-13 inoculation. Findings of current work highlighted the importance of Serratia sp. CP-13 and its inoculation impact on morpho-physio-biochemical attributes of maize growth under Cd dominant environment, which is likely an addition towards efficient approaches for bacterially-assisted Cd bioremediation and minimal Cd retention in edible plant parts.


Assuntos
Cádmio/toxicidade , Serratia/fisiologia , Poluentes do Solo/toxicidade , Zea mays/fisiologia , Antioxidantes/metabolismo , Biodegradação Ambiental , Transporte Biológico , Biomassa , Cádmio/metabolismo , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Serratia/metabolismo , Poluentes do Solo/análise , Poluentes do Solo/metabolismo , Zea mays/metabolismo , Zea mays/microbiologia
6.
Physiol Mol Biol Plants ; 27(2): 297-312, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33707870

RESUMO

Cadmium (Cd) in soil-plant system can abridge plant growth by initiating alterations in root zones. Hydroponics and rhizoboxes are useful techniques to monitor plant responses against various natural and/or induced metal stresses. However, soil based studies are considered more appropriate in order to devise efficient food safety and remediation strategies. The present research evaluated the Cd-mediated variations in elemental dynamics of rhizospheric soil together with in planta ionomics and morpho-physio-biochemical traits of two differentially Cd responsive maize cultivars. Cd-sensitive (31P41) and Cd-tolerant (3062) cultivars were grown in pots filled with 0, 20, 40, 60 and 80 µg/kg CdCl2 supplemented soil. The results depicted that the maize cultivars significantly influenced the elemental dynamics of rhizosphere as well as in planta mineral accumulation under applied Cd stress. The uptake and translocation of N, P, K, Ca, Mg, Zn and Fe from rhizosphere and root cell sap was significantly higher in Cd stressed cv. 3062 as compared to cv. 31P41. In sensitive cultivar (31P41), Cd toxicity resulted in significantly prominent reduction of biomass, leaf area, chlorophyll, carotenoids, protein contents as well as catalase activity in comparison to tolerant one (3062). Analysis of tolerance indexes (TIs) validated that cv. 3062 exhibited advantageous growth and efficient Cd tolerance due to elevated proline, phenolics and activity of antioxidative machinery as compared to cv. 31P41. The cv. 3062 exhibited 54% and 37% less Cd bio-concentration (BCF) and translocation factors (TF), respectively in comparison to cv. 31P41 under highest Cd stress regime. Lower BCF and TF designated a higher Cd stabilization by tolerant cultivar (3062) in rhizospheric zone and its potential use in future remediation plans.

7.
Physiol Mol Biol Plants ; 27(9): 2101-2114, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34629781

RESUMO

Plant growth-promoting rhizobacteria (PGPR) represent a set of microorganisms that play significant role in improving plant growth and controlling the phytopathogens. Unpredictable performance after the application of PGPR has been observed when these were shifted from in-vitro to in-vivo conditions due to the prevalence of various abiotic stress conditions. During growing period, the potato crop is subjected to a combination of biotic and abiotic stresses. Rhizoctonia solani, a soil-borne plant pathogen, causes reduced vigor and yield of potato crop worldwide. In the current study, multi-stress-tolerant rhizobacterial strain, Bacillus subtilis PM32, was isolated from field-grown potato with various plant growth promoting (PGP) traits including zinc and potassium solubilization, biological nitrogen fixation, ammonia and siderophore, as well as extracellular enzyme productions (cellulase, catalase, amylase, protease, pectinase, and chitinase). The strain PM32 exhibited a distinct potential to support plant growth by demonstrating production of indole-3-acetic acid (102.6 µM/mL), ACC-deaminase activity (1.63 µM of α-ketobutyrate/h/mg protein), and exopolysaccharides (2.27 mg/mL). By retarding mycelial growth of R. solani the strain PM32 drastically reduced pathogenicity of R. solani. The strain PM32 also suppressed the pathogenic activity significantly by impeding mycelial expansion of R. solani with inhibition co-efficient of 49.87. The B. subtilis PM32 also depicted significant tolerance towards salt, heavy metal (Pb), heat and drought stress. PCR based amplification of ituC and acds genes coding for iturin and ACC-deaminase activity respectively indicated potential of strain PM32 for lipopeptides production and ACC deaminase enzyme activity. Results of both in-vitro and pot experiments under greenhouse conditions depicted the efficiency of B. subtilis PM32 as a promising bio-control agent for R. solani infection together with enhanced growth of potato plants as deciphered from biomass accumulation, chlorophyll a, b, and carotenoid contents. Therefore, it was envisioned that application of indigenous multi-stress tolerant PGPR may serve to induce biotic and abiotic stress tolerance in crops/plants for pathogen control and sustainable global food supply. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01067-2.

8.
Physiol Mol Biol Plants ; 26(9): 1787-1797, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32943816

RESUMO

A pot experiment was conducted to examine the effect of foliar application of various levels of ZnSO4 on wheat (Triticum aestivum L.) under cadmium (Cd) stress. Seeds of two wheat varieties i.e., Ujala-2016 and Anaj-2017 were sown in sand filled plastic pots. Cadmium (CdCl2) stress i.e., 0 and 0.5 mM CdCl2 was applied in full strength Hoagland's nutrient solution after 4 weeks of seed germination. Foliar spray of varying ZnSO4 levels i.e., 0, 2, 4, 6 and 8 mM was applied after 2 weeks of CdCl2 stress induction (of 6 week old plants). After 3 weeks of foliar treatment leaf samples of 9 week old wheat plants were collected for the determination of changes in various growth and physiobiochemical attributes. Results obtained showed that cadmium stress (0.5 mM CdCl2) significantly decreased shoot and root fresh and dry weights, shoot and root lengths, yield attributes, chlorophyll a contents and total phenolics, while increased hydrogen peroxide (H2O2), total soluble proteins, free proline, glycinebetaine (GB) contents, and activities of antioxidant enzymes i.e., catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD). Foliar application of varying ZnSO4 levels significantly increased various growth attributes, chlorophyll b contents, H2O2, free proline, GB and activities of antioxidant enzymes i.e., CAT, POD and APX, while decreased relative water contents and total phenolics under Cd stress or non stress conditions. Furthermore, both wheat varieties showed differential response under Cd stress and towards foliar application of ZnSO4 e.g., wheat var. Ujala-2016 was higher in shoot dry weight, root length, root fresh and dry weights, total leaf area per plant, 100 grains weight, number of tillers per plant, chlorophyll b, hydrogen peroxide (H2O2), activities of APX, POD, glycinebetaine and leaf free proline contents, while var. Anaj-2017 exhibited high shoot fresh weight, grain yield per plant, no. of grains per plant, chlorophyll contents, chlorophyll a/b ratio, total phenolics, MDA and total soluble protein contents under cadmium stress or non stress conditions.

9.
Physiol Mol Biol Plants ; 26(12): 2417-2433, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424156

RESUMO

Cadmium (Cd) is highly toxic metal for plant metabolic processes even in low concentration due to its longer half-life and non-biodegradable nature. The current study was designed to assess the bioremediation potential of a Cd-tolerant phytobeneficial bacterial strain Bacillus sp. SDA-4, isolated, characterized and identified from Chakera wastewater reservoir, Faisalabad, Pakistan, together with spinach (as a test plant) under different Cd regimes. Spinach plants were grown with and without Bacillus sp. SDA-4 inoculation in pots filled with 0, 5 or 10 mg kg-1 CdCl2-spiked soil. Without Bacillus sp. SDA-4 inoculation, spinach plants exhibited reduction in biomass accumulation, antioxidative enzymes and nutrient retention. However, plants inoculated with Bacillus sp. SDA-4 revealed significantly augmented growth, biomass accumulation and efficiency of antioxidative machinery with concomitant reduction in proline and MDA contents under Cd stress. Furthermore, application of Bacillus sp. SDA-4 assisted the Cd-stressed plants to sustain optimal levels of essential nutrients (N, P, K, Ca and Mg). It was inferred that the characterized Cd-tolerant PGPR strain, Bacillus sp. SDA-4 has a potential to reduce Cd uptake and lipid peroxidation which in turn maintained the optimum balance of nutrients and augmented the growth of Cd-stressed spinach. Analysis of bioconcentration factor (BCF) and translocation factor (TF) revealed that Bacillus sp. SDA-4 inoculation with spinach sequestered Cd in rhizospheric zone. Research outcomes are important for understanding morpho-physio-biochemical attributes of spinach-Bacillus sp. SDA-4 synergy which might provide efficient strategies to decrease Cd retention in edible plants and/or bioremediation of Cd polluted soil colloids.

10.
Ecotoxicol Environ Saf ; 183: 109466, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31408821

RESUMO

The potential of plant growth regulating microorganisms present in the soil can be explored towards the purpose of identifying salt tolerant strategies and crop cultivars. Current study was designed to elucidate the capabilities of salt stress tolerant plant growth promoting rhizobacteria (PGPR) Bacillus siamensis (PM13), Bacillus sp. (PM15) and Bacillus methylotrophicus (PM19) in undermining the effects of salt stress on wheat seedling. Strains were characterized for their IAA (81-113 µM/ml), ACC-deaminase (0.68-0.95 µM/mg protein/h) and exopolysaccharide (EPS) (0.62-0.97 mg/ml) producing activity both under normal and NaCl stressed conditions. Effects of bacterial inoculation on germination and seedling growth of wheat variety Pakistan-13 was observed under induced salinity stress levels (0, 4, 8, 16 dS/m). All the morpho-physiological characteristics of wheat seedlings were affected drastically by the NaCl stress and the growth parameters expressed a negative relationship with increased NaCl levels. PGPR application had a very positive influence on germination rate of wheat seedlings, root and shoot length, photosynthetic pigments etc. Elongated roots and enhanced vegetative shoot growth as well as seedling's fresh and dry weights were highest in plants treated with B. methylotrophicus PM19. Sequestration of Na+ ion by EPS production and degradation of exuded ACC into a-ketobutyrate and ammonia by ACCD bacteria efficiently reduced the impact of salinity stress on wheat growth. Current findings suggested that the used PGPR strains are potential candidates for improving crop growth in salt stressed agricultural systems. However further research validation would be necessary before large scale/field application.


Assuntos
Bacillus/crescimento & desenvolvimento , Carbono-Carbono Liases/metabolismo , Germinação , Polissacarídeos Bacterianos/metabolismo , Plantas Tolerantes a Sal/crescimento & desenvolvimento , Triticum/crescimento & desenvolvimento , Bacillus/metabolismo , Paquistão , Salinidade , Plantas Tolerantes a Sal/efeitos dos fármacos , Plantas Tolerantes a Sal/microbiologia , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Microbiologia do Solo , Triticum/efeitos dos fármacos , Triticum/microbiologia
11.
BMC Vet Res ; 14(1): 25, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29357858

RESUMO

BACKGROUND: Pseudorabies (PR) is an important emerging infectious disease that is characterized by fever, extreme itching and encephalomyelitis. However, it is still unclear whether Tibetan pigs are exposed to Pseudorabies virus (PRV) or not. The present study was conducted to investigate the seroprevalence of PRV infection in Tibetan pigs in Nyingchi area of Tibet through enzyme-linked immunosorbent assay (ELISA). A total of 368 serum samples from Tibetan pigs were collected during 2015. RESULTS: Results showed that 58 (15.76%) samples were found positive for PRV antibodies with further distribution of 18.23%, 13.42% and 6.25% from Nyingchi, Mainling and Gongbo'gyamda areas on the Tibetan plateau, respectively; along with 12.10%, 17.71% and 17.57% prevalence of PRV in juveniles, sub-adults and adults, respectively. The prevalence of PRV infection between male (14.61%) and female (16.84%) showed non-significant difference (P > 0.05). The risk factors of infection were found to be associated with feed type, age and altitude. CONCLUSIONS: The present study depicts a serious concern with a new emerging infectious disease in Tibetan pigs in Tibet, China.


Assuntos
Herpesvirus Suídeo 1/imunologia , Pseudorraiva/epidemiologia , Doenças dos Suínos/epidemiologia , Fatores Etários , Altitude , Ração Animal/análise , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Masculino , Pseudorraiva/imunologia , Fatores de Risco , Estudos Soroepidemiológicos , Suínos , Doenças dos Suínos/virologia , Tibet/epidemiologia
13.
Int J Phytoremediation ; 19(1): 14-22, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-27869502

RESUMO

In developing countries, soil contamination with metals is ubiquitous, which poses a serious threat to the ecosystem. The current study was designed to screen out the nested belongings of Cicer arietinum plants and Bacillus pumilus (KF 875447) in extracting copper (Cu) from contaminated soils. A pot experiment was executed by growing C. arietinum seedlings either inoculated with B. pumilus or uninoculated along with the application of 5 mM ethylenediaminetetraacetic acid (EDTA). Plants were subjected to three different concentrations of Cu (250, 350, and 500 ppm) for 48 days. An increase in Cu uptake was observed in C. arietinum plants inoculated with B. pumilus as compared to uninoculated ones. C. arietinum exhibited improved values for different growth parameters in the presence of B. pumilus, that is, root length (37%), shoot length (31%), whole plant fresh as well as (45%) dry weight (27%), and chlorophyll contents (32%). More than 70% of tolerance index (TI) was observed for plants at 500 ppm Cu treatment. Addition of B. pumilus and EDTA significantly increased metal uptake by C. arietinum up to 19 and 36%, respectively, while the application of B. pumilus and EDTA in combination increased metal accumulation by 41%. The calculated bioaccumulation and translocation factor (TF) revealed that C. arietinum possess phytoextraction potential for Cu, and this ability is significantly improved with application of B. pumilus and EDTA amendments.


Assuntos
Bacillus pumilus/fisiologia , Quelantes/farmacologia , Cicer/metabolismo , Cobre/metabolismo , Ácido Edético/farmacologia , Endófitos/fisiologia , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Quelantes/administração & dosagem , Ácido Edético/administração & dosagem
14.
Int J Phytoremediation ; 19(7): 670-678, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28084797

RESUMO

In this study, we examined the potential role of phosphate (P; 0, 50, 100 mg kg-1) on growth, gas exchange attributes, and photosynthetic pigments of Brassica napus and Brassica juncea under arsenic (As) stress (0, 25, 50, 75 mg kg-1) in a pot experiment. Results revealed that phosphate supplementation (P100) to As-stressed plants significantly increased shoot As concentration, dry biomass yield, and As uptake, in addition to the improved morphological and gas exchange attributes and photosynthetic pigments over P0. However, phosphate-assisted increase in As uptake was substantially (up to two times) greater for B. napus, notably due to higher shoot As concentration and dry biomass yield, compared to B. juncea at the P100 level. While phosphate addition in soil (P100) led to enhanced shoot As concentration in B. juncea, it reduced shoot dry biomass, primarily after 50 and 75 mg kg-1 As treatments. The translocation factor and bioconcentration factor values of B. napus were higher than B. juncea for all As levels in the presence of phosphate. This study demonstrates that phosphate supplementation has a potential to improve As phytoextraction efficiency, predominantly for B. napus, by minimizing As-induced damage to plant growth, as well as by improving the physiological and photosynthetic attributes.


Assuntos
Arsênio/metabolismo , Biodegradação Ambiental , Brassica napus , Poluentes do Solo/metabolismo , Mostardeira , Fosfatos
15.
Bioorg Chem ; 68: 30-40, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27441832

RESUMO

To discover multifunctional agents for the treatment of Alzheimer's disease, a series of hydrazide based Schiff bases were designed and synthesized based on multitarget-directed strategy. We have synthesized twenty-eight analogs of hydrazide based Schiff bases, characterized by various spectroscopic techniques and evaluated in vitro for acetylcholinesterase and butyrylcholinesterase inhibition. All compounds showed varied degree of acetylcholinesterase and butyrylcholinesterase inhibition when compared with standard Eserine. Among the series, compounds 10, 3 and 24 having IC50 values 4.12±0.01, 8.12±0.01 and 8.41±0.06µM respectively showed potent acetylcholinesterase inhibition when compared with Eserine (IC50=0.85±0.0001µM). Three compounds 13, 24 and 3 having IC50 values 6.51±0.01, 9.22±0.07 and 37.82±0.14µM respectively showed potent butyrylcholinesterase inhibition by comparing with eserine (IC50=0.04±0.0001µM). The remaining compounds also exhibited moderate to weak inhibitory potential. Structure activity relationship has been established. Through molecular docking studies the binding interaction was confirmed.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Hidrazinas/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Hidrazinas/síntese química , Hidrazinas/química , Modelos Moleculares , Estrutura Molecular , Bases de Schiff/síntese química , Bases de Schiff/química , Bases de Schiff/farmacologia , Relação Estrutura-Atividade
16.
Bioorg Chem ; 62: 106-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26318401

RESUMO

A series of thirty (30) thiazole analogs were prepared, characterized by (1)H NMR, (13)C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59±0.01 and 389.25±1.75µM when compared with the standard eserine (IC50, 0.85±0.0001µM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59±0.01, 1.77±0.01, 6.21±0.01, 7.56±0.01, 8.46±0.01, 14.81±0.32 and 16.54±0.21µM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3±0.50, 35.3±0.64, 36.6±0.70, 44.81±0.81, 46.36±0.84, 48.2±0.06 and 48.72±0.91µM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase/farmacologia , Tiazóis/farmacologia , Butirilcolinesterase , Domínio Catalítico , Simulação de Acoplamento Molecular
17.
Bioorg Chem ; 63: 123-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26520885

RESUMO

4-Thiazolidinone analogs 1-20 were synthesized, characterized by (1)H NMR and EI-MS and investigated for urease inhibitory activity. All twenty (20) analogs exhibited varied degree of urease inhibitory potential with IC50 values 1.73-69.65µM, if compared with standard thiourea having IC50 value of 21.25±0.15µM. Among the series, eight derivatives 3, 6, 8, 10, 15, 17, 19, and 20 showed outstanding urease inhibitory potential with IC50 values of 9.34±0.02, 14.62±0.03, 8.43±0.01, 7.3±0.04, 2.31±0.002, 5.75±0.003, 8.81±0.005, and 1.73±0.001µM, respectively, which is better than the standard thiourea. The remaining analogs showed good to excellent urease inhibition. The binding interactions of these compounds were confirmed through molecular docking studies.


Assuntos
Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Tiazolidinas/farmacologia , Urease/antagonistas & inibidores , Bacillus/enzimologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Tiazolidinas/síntese química , Tiazolidinas/química , Urease/metabolismo
18.
Trop Anim Health Prod ; 47(6): 1169-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25953024

RESUMO

Bovine tuberculosis is one of the important diseases of dairy and wild animals. The disease is prevalent all over the world, though developed countries have tremendously reduced the prevalence through eradication campaigns. The prevalence of disease in Pakistan on the basis of tuberculin testing or culture isolation of the organism has been reported previously. It is, however, important to use the latest diagnostic tools, i.e. PCR to confirm the type of Mycobacterium infecting the animals in Pakistan. Therefore, the present study was carried out to assess the utility of direct PCR on milk samples and nasal swabs to confirm the type of Mycobacterium infecting the animals. This study was carried out on 215 cattle and buffaloes of more than 2 years of age present at two livestock farms. The tuberculin results showed 22.5% prevalence at one farm and 25.9% at the other with an overall prevalence of 24.7%. The 92.5% of milk samples and/or nasal swabs showed positive PCR for Mycobacterium genus, 86.8% for Mycobacterium tuberculosis complex and 77.4% for Mycobacterium bovis. The M. bovis by PCR was detected in 13.2% of milk samples, 24.5% of nasal swabs and 39.6% of both milk samples + nasal swabs. The results suggested that there are 60% higher chance for a nasal swab to yield a positive PCR for M. bovis than the milk sample. It can be concluded from the present study that tuberculin testing is a useful method in studying the prevalence of disease as the PCR for Mycobacterium genus was positive in 92.5%, M. tuberculosis complex in 86.8% and Mycobacterium bovis in 77.4% cases.


Assuntos
Mycobacterium bovis/isolamento & purificação , Tuberculose/veterinária , Animais , Búfalos , Bovinos , Indústria de Laticínios , Feminino , Leite/microbiologia , Mycobacterium bovis/genética , Nariz/microbiologia , Paquistão/epidemiologia , Reação em Cadeia da Polimerase/veterinária , Teste Tuberculínico/veterinária , Tuberculose/epidemiologia , Tuberculose/microbiologia , Tuberculose Bovina/epidemiologia , Tuberculose Bovina/microbiologia
19.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37980713

RESUMO

Salinity affects crop growth by modulating cellular ionic concentrations and generation of reactive oxygen species. Application of silicon (Si) has proved beneficial in ameliorating salinity-triggered plant growth and yield retardations. Leaf roll explants of three sugarcane (Saccharum officinarum ) genotypes (HSF-240, CPF-246, CPF-250) were cultured in Murashige and Skoog (MS) medium supplemented with K2 SiO3 . In vitro regenerated plantlets were acclimatised and grown in natural saline soil. In absence of Si, cv. CPF-246 exhibited better salt tolerance as indicted by maximum chlorophyll a and chlorophyll b contents, rate of photosynthesis and root K+ uptake along with less cellular hydrogen peroxide content. Silicon restricted root Na+ uptake but assisted in K+ , Ca2+ , Mg2+ and Fe2+ accretion in roots and their translocation towards shoots. Cv. HSF-240 and cv. CPF-250 exhibited more increase in photosynthetic pigment content, stomatal conductance and photosynthetic rate after addition of 25 or 50mgL-1 Si than control group. Optimum phenolic content and antioxidant enzyme activity along with decreased lipid peroxidation and hydrogen peroxide content were recorded in all three sugarcane genotypes raised in presence of 25 or 50mgL-1 Si. These findings signify Si supplementation (50mgL-1 ) in tissue culture medium and plant adaptation in saline soil. Further in vitro studies involving Si-mediated gene expression modulations in sugarcane protoplasts shall assist in deciphering cross-talk between Si uptake and cellular responses. The application of Si can further be tested for other plant species to devise strategies for improved crop growth and utilisation of saline areas for crop cultivation.


Assuntos
Antioxidantes , Saccharum , Antioxidantes/metabolismo , Saccharum/metabolismo , Silício/farmacologia , Clorofila A , Solo , Peróxido de Hidrogênio , Solução Salina , Suplementos Nutricionais , Nutrientes
20.
Artigo em Inglês | MEDLINE | ID: mdl-38065305

RESUMO

Activator protein-1 subfamily member c-Fos wields significant influence over cellular activities, such as regulation of cell growth and division, cell death, and immune responses under various extracellular situations. In this study, the full-length c-Fos of sea cucumber, Apostichopus japonicus (Ajfos) was successfully cloned and analyzed. The anticipated 306 amino acid sequences of Ajfos displayed a basic-leucine zipper (bZIP) domain, similar to invertebrate counterparts. In addition, the qPCR results suggested Ajfos expressed in all tissues, with the highest level in coelomocytes from polian vesicle (vesicle lumen cells), followed by coelomocytes from coelom (coelomocytes). Moreover, the expression levels of Ajfos in the coelomocytes and vesicle lumen cells of sea cucumber showed significant changes after the Vibrio splendidus challenge, especially reaching a peak at 6 h. Compared with the silencing negative control RNA interference (siNC) group, silencing Ajfos (siAjfos) in vivo decreased the downstream proliferation-related gene expression of vesicle lumen cells after infection with V. splendidus while no significant influence was observed on coelomocytes. Furthermore, the proliferation proportion of vesicle lumen cells in the siAjfos group was significantly reduced under pathogen stimulation conditions. Finally, based on the fluctuation trend of total coelomocyte density (TCD) from coelom and polian vesicle previously discovered, it is evident that Ajfos played a critical role in facilitating the swift proliferation of vesicle lumen cells in response to V. splendidus stimulation. Altogether, this research provided an initial reference of the function of Ajfos in echinoderms, unveiling its participation in host coelomocyte proliferation of sea cucumbers during bacterial challenges.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Fatores de Transcrição , Pepinos-do-Mar/genética , Regulação da Expressão Gênica , Clonagem Molecular , Imunidade Inata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA