Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
Am J Transplant ; 24(3): 419-435, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295008

RESUMO

There is a critical need for biomarkers of acute cellular rejection (ACR) in organ transplantation. We hypothesized that ACR leads to changes in donor-reactive T cell small extracellular vesicle (sEV) profiles in transplant recipient circulation that match the kinetics of alloreactive T cell activation. In rodent heart transplantation, circulating T cell sEV quantities (P < .0001) and their protein and mRNA cargoes showed time-specific expression of alloreactive and regulatory markers heralding early ACR in allogeneic transplant recipients but not in syngeneic transplant recipients. Next generation sequencing of their microRNA cargoes identified novel candidate biomarkers of ACR, which were validated by stem loop quantitative reverse transcription polymerase chain reaction (n = 10). Circulating T cell sEVs enriched from allogeneic transplant recipients mediated targeted cytotoxicity of donor cardiomyocytes by apoptosis assay (P < .0001). Translation of the concept and EV methodologies to clinical heart transplantation demonstrated similar upregulation of circulating T cell sEV profiles at time points of grade 2 ACR (n = 3 patients). Furthermore, T cell receptor sequencing of T cell sEV mRNA cargo demonstrated expression of T cell clones with intact complementarity determining region 3 signals. These data support the diagnostic potential of T cell sEVs as noninvasive biomarker of ACR and suggest their potential functional roles.


Assuntos
Vesículas Extracelulares , Linfócitos T , Humanos , Biomarcadores , RNA Mensageiro/genética , Aloenxertos
2.
Biomed Eng Online ; 23(1): 38, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561821

RESUMO

BACKGROUND: After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS: Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS: All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS: This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Resultado do Tratamento , Caminhada/fisiologia , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/terapia , Marcha/fisiologia , Sobreviventes
3.
Arch Phys Med Rehabil ; 105(3): 546-557, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37907160

RESUMO

OBJECTIVE: To compare the accuracy and reliability of 10 different accelerometer-based step-counting algorithms for individuals with lower limb loss, accounting for different clinical characteristics and real-world activities. DESIGN: Cross-sectional study. SETTING: General community setting (ie, institutional research laboratory and community free-living). PARTICIPANTS: Forty-eight individuals with a lower limb amputation (N=48) wore an ActiGraph (AG) wGT3x-BT accelerometer proximal to the foot of their prosthetic limb during labeled indoor/outdoor activities and community free-living. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Intraclass correlation coefficient (ICC), absolute and root mean square error (RMSE), and Bland Altman plots were used to compare true (manual) step counts to estimated step counts from the proprietary AG Default algorithm and low frequency extension filter, as well as from 8 novel algorithms based on continuous wavelet transforms, fast Fourier transforms (FFTs), and peak detection. RESULTS: All algorithms had excellent agreement with manual step counts (ICC>0.9). The AG Default and FFT algorithms had the highest overall error (RMSE=17.81 and 19.91 steps, respectively), widest limits of agreement, and highest error during outdoor and ramp ambulation. The AG Default algorithm also had among the highest error during indoor ambulation and stairs, while a FFT algorithm had the highest error during stationary tasks. Peak detection algorithms, especially those using pre-set parameters with a trial-specific component, had among the lowest error across all activities (RMSE=4.07-8.99 steps). CONCLUSIONS: Because of its simplicity and accuracy across activities and clinical characteristics, we recommend the peak detection algorithm with set parameters to count steps using a prosthetic-worn AG among individuals with lower limb loss for clinical and research applications.


Assuntos
Membros Artificiais , Humanos , Acelerometria , Estudos Transversais , Reprodutibilidade dos Testes , Algoritmos
4.
Spinal Cord ; 62(6): 320-327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575740

RESUMO

STUDY DESIGN: Non-interventional, cross-sectional pilot study. OBJECTIVES: To establish the validity and reliability of the BioStamp nPoint biosensor (Medidata Solutions, New York, NY, USA [formerly MC10, Inc.]) for measuring electromyography in individuals with cervical spinal cord injury (SCI) by comparing the surface electromyography (sEMG) metrics with the Trigno wireless electromyography system (Delsys, Natick, MA, USA). SETTING: Participants were recruited from the Shirley Ryan AbilityLab registry. METHODS: Individuals aged 18-70 years with cervical SCI were evaluated with the two biosensors to capture activity on upper-extremity muscles during two study sessions conducted over 2 days (day 1-consent alone; day 2-two data collections in same session). Time and frequency metrics were captured, and signal-to-noise ratio was determined for each muscle group. Test-retest reliability was determined using Pearson's correlation. Validation of the BioStamp nPoint system was based on Bland-Altmann analysis. RESULTS: Among the 11 participants, 30.8% had subacute cervical injury at C5-C6; 53.8% were injured within 1 year of the study. Results from the test-retest reliability assessment revealed that most Pearson's correlations between the two sensory measurements were strong (≥0.50). The Bland-Altman analysis found values of the signal-to-noise ratio, frequency, and peak amplitude were within the level of agreement. Signal-to-noise ratios ranged from 7.06 to 22.1. CONCLUSIONS: In most instances, the performance of the BioStamp nPoint sensors was moderately to strongly correlated with that of the Trigno sensors in all muscle groups tested. The BioStamp nPoint system is a valid and reliable approach to assess sEMG measures in individuals with cervical SCI. SPONSORSHIP: The present study was supported by AbbVie Inc.


Assuntos
Eletromiografia , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/diagnóstico , Traumatismos da Medula Espinal/fisiopatologia , Eletromiografia/instrumentação , Eletromiografia/métodos , Pessoa de Meia-Idade , Adulto , Masculino , Feminino , Reprodutibilidade dos Testes , Estudos Transversais , Idoso , Adulto Jovem , Projetos Piloto , Adolescente , Medula Cervical/lesões , Vértebras Cervicais , Técnicas Biossensoriais/instrumentação , Músculo Esquelético/fisiopatologia
5.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893178

RESUMO

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups.


Assuntos
COVID-19/fisiopatologia , Frequência Cardíaca , Taxa Respiratória , Sons Respiratórios , SARS-CoV-2 , Tecnologia sem Fio , Biomarcadores , Humanos , Monitorização Fisiológica
6.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34663725

RESUMO

Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.


Assuntos
Comportamento do Lactente/fisiologia , Monitorização Fisiológica/instrumentação , Movimento/fisiologia , Sinais Vitais/fisiologia , Tecnologia sem Fio/instrumentação , Viés , Criança , Desenho de Equipamento , Frequência Cardíaca , Humanos , Imageamento Tridimensional , Lactente , Miniaturização , Monitorização Fisiológica/estatística & dados numéricos , Taxa Respiratória , Pele , Gravação em Vídeo , Tecnologia sem Fio/estatística & dados numéricos
7.
J Neuroeng Rehabil ; 21(1): 72, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702705

RESUMO

BACKGROUND: Neurodegenerative diseases, such as Parkinson's disease (PD), necessitate frequent clinical visits and monitoring to identify changes in motor symptoms and provide appropriate care. By applying machine learning techniques to video data, automated video analysis has emerged as a promising approach to track and analyze motor symptoms, which could facilitate more timely intervention. However, existing solutions often rely on specialized equipment and recording procedures, which limits their usability in unstructured settings like the home. In this study, we developed a method to detect PD symptoms from unstructured videos of clinical assessments, without the need for specialized equipment or recording procedures. METHODS: Twenty-eight individuals with Parkinson's disease completed a video-recorded motor examination that included the finger-to-nose and hand pronation-supination tasks. Clinical staff provided ground truth scores for the level of Parkinsonian symptoms present. For each video, we used a pre-existing model called PIXIE to measure the location of several joints on the person's body and quantify how they were moving. Features derived from the joint angles and trajectories, designed to be robust to recording angle, were then used to train two types of machine-learning classifiers (random forests and support vector machines) to detect the presence of PD symptoms. RESULTS: The support vector machine trained on the finger-to-nose task had an F1 score of 0.93 while the random forest trained on the same task yielded an F1 score of 0.85. The support vector machine and random forest trained on the hand pronation-supination task had F1 scores of 0.20 and 0.33, respectively. CONCLUSION: These results demonstrate the feasibility of developing video analysis tools to track motor symptoms across variable perspectives. These tools do not work equally well for all tasks, however. This technology has the potential to overcome barriers to access for many individuals with degenerative neurological diseases like PD, providing them with a more convenient and timely method to monitor symptom progression, without requiring a structured video recording procedure. Ultimately, more frequent and objective home assessments of motor function could enable more precise telehealth optimization of interventions to improve clinical outcomes inside and outside of the clinic.


Assuntos
Aprendizado de Máquina , Doença de Parkinson , Gravação em Vídeo , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/fisiopatologia , Masculino , Feminino , Gravação em Vídeo/métodos , Pessoa de Meia-Idade , Idoso , Máquina de Vetores de Suporte
8.
J Neurol Phys Ther ; 47(4): 189-199, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306418

RESUMO

BACKGROUND AND PURPOSE: There is interest in incorporating digital health technology in routine practice. We integrate multiple stakeholder perspectives to describe implementation determinants (barriers and facilitators) regarding digital health technology use to facilitate exercise behavior change for people with Parkinson disease in outpatient physical therapy. METHODS: The purposeful sample included people with Parkinson disease (n = 13), outpatient physical therapists (n = 12), and advanced technology stakeholders including researchers and reimbursement specialists (n = 13). Semistructured interviews were used to elicit implementation determinants related to using digital health technology for activity monitoring and exercise behavior change. Deductive codes based on the Consolidated Framework for Implementation Research were used to describe implementation determinants. RESULTS: Key implementation determinants were similar across stakeholder groups. Essential characteristics of digital health technology included design quality and packaging, adaptability, complexity, and cost. Implementation of digital health technology by physical therapists and people with Parkinson disease was influenced by their knowledge, attitudes, and varied confidence levels in using digital health technology. Inner setting organizational determinants included available resources and access to knowledge/information. Process determinants included device interoperability with medical record systems and workflow integration. Outer setting barriers included lack of external policies, regulations, and collaboration with device companies. DISCUSSION AND CONCLUSIONS: Future implementation interventions should address key determinants, including required processes for how and when physical therapists instruct people with Parkinson disease on digital health technology, organizational readiness, workflow integration, and characteristics of physical therapists and people with Parkinson disease who may have ingrained beliefs regarding their ability and willingness to use digital health technology. Although site-specific barriers should be addressed, digital health technology knowledge translation tools tailored to individuals with varied confidence levels may be generalizable across clinics.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content available at: http://links.lww.com/JNPT/A436 ).


Assuntos
Doença de Parkinson , Fisioterapeutas , Humanos , Exercício Físico , Pesquisa Qualitativa , Modalidades de Fisioterapia
9.
J Cardiothorac Vasc Anesth ; 37(9): 1550-1567, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37353423

RESUMO

This article spotlights the research highlights of this year that specifically pertain to the specialty of anesthesia for heart transplantation. This includes the research on recent developments in the selection and optimization of donors and recipients, including the use of donation after cardiorespiratory death and extended criteria donors, the use of mechanical circulatory support and nonmechanical circulatory support as bridges to transplantation, the effect of COVID-19 on heart transplantation candidates and recipients, and new advances in the perioperative management of these patients, including the use of echocardiography and postoperative outcomes, focusing on renal and cerebral outcomes.


Assuntos
Anestesia em Procedimentos Cardíacos , Anestesia , COVID-19 , Transplante de Coração , Obtenção de Tecidos e Órgãos , Humanos , Doadores de Tecidos
10.
J Neuroeng Rehabil ; 20(1): 10, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681852

RESUMO

BACKGROUND: Few, if any estimates of cost-effectiveness for locomotor training strategies following spinal cord injury (SCI) are available. The purpose of this study was to estimate the cost-effectiveness of locomotor training strategies following spinal cord injury (overground robotic locomotor training versus conventional locomotor training) by injury status (complete versus incomplete) using a practice-based cohort. METHODS: A probabilistic cost-effectiveness analysis was conducted using a prospective, practice-based cohort from four participating Spinal Cord Injury Model System sites. Conventional locomotor training strategies (conventional training) were compared to overground robotic locomotor training (overground robotic training). Conventional locomotor training included treadmill-based training with body weight support, overground training, and stationary robotic systems. The outcome measures included the calculation of quality adjusted life years (QALYs) using the EQ-5D and therapy costs. We estimate cost-effectiveness using the incremental cost utility ratio and present results on the cost-effectiveness plane and on cost-effectiveness acceptability curves. RESULTS: Participants in the prospective, practice-based cohort with complete EQ-5D data (n = 99) qualified for the analysis. Both conventional training and overground robotic training experienced an improvement in QALYs. Only people with incomplete SCI improved with conventional locomotor training, 0.045 (SD 0.28), and only people with complete SCI improved with overground robotic training, 0.097 (SD 0.20). Costs were lower for conventional training, $1758 (SD $1697) versus overground robotic training $3952 (SD $3989), and lower for those with incomplete versus complete injury. Conventional overground training was more effective and cost less than robotic therapy for people with incomplete SCI. Overground robotic training was more effective and cost more than conventional training for people with complete SCI. The incremental cost utility ratio for overground robotic training for people with complete spinal cord injury was $12,353/QALY. CONCLUSIONS: The most cost-effective locomotor training strategy for people with SCI differed based on injury completeness. Conventional training was more cost-effective than overground robotic training for people with incomplete SCI. Overground robotic training was more cost-effective than conventional training for people with complete SCI. The effect estimates may be subject to limitations associated with small sample sizes and practice-based evidence methodology. These estimates provide a baseline for future research.


Assuntos
Procedimentos Cirúrgicos Robóticos , Robótica , Traumatismos da Medula Espinal , Humanos , Análise de Custo-Efetividade , Estudos Prospectivos , Caminhada
11.
Int J Neurosci ; : 1-10, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750212

RESUMO

PURPOSE: Muscle activation often occurs in muscles ipsilateral to a voluntarily activated muscle and to a greater extent after stroke. In this study, we measured muscle activation in non-target, ipsilateral leg muscles and used transcranial magnetic stimulation (TMS) to provide insight into whether corticomotor pathways contribute to involuntary activation. MATERIALS AND METHODS: Individuals with stroke performed unilateral isometric ankle dorsiflexion, ankle plantarflexion, knee extension, and knee flexion. To quantify involuntary muscle activation in non-target muscles, muscle activation was measured during contractions from the ipsilateral tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and biceps femoris (BF) and normalized to resting muscle activity. To provide insight into mechanisms of involuntary non-target muscle activation, TMS was applied to the contralateral hemisphere, and motor evoked potentials (MEPs) were recorded. RESULTS: We found significant muscle activation in nearly every non-target muscle during isometric unilateral contractions. MEPs were frequently observed in non-target muscles, but greater non-target MEP amplitude was not associated with greater non-target muscle activation. CONCLUSIONS: Our results suggest that non-target muscle activation occurs frequently in individuals with chronic stroke. The lack of association between non-target TMS responses and non-target muscle activation suggests that non-target muscle activation may have a subcortical or spinal origin. Non-target muscle activation has important clinical implications because it may impair torque production, out-of-synergy movement, and muscle activation timing.

12.
Genomics ; 114(3): 110349, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35346780

RESUMO

Stem/progenitor cells, including cardiac-derived c-kit+ progenitor cells (CPCs), are under clinical evaluation for treatment of cardiac disease. Therapeutic efficacy of cardiac cell therapy can be attributed to paracrine signaling and the release of extracellular vesicles (EVs) carrying diverse cargo molecules. Despite some successes and demonstrated safety, large variation in cell populations and preclinical/clinical outcomes remains a problem. Here, we investigated this variability by sequencing coding and non-coding RNAs of CPCs and CPC-EVs from 30 congenital heart disease patients and used machine learning methods to determine potential mechanistic insights. CPCs retained RNAs related to extracellular matrix organization and exported RNAs related to various signaling pathways to CPC-EVs. CPC-EVs are enriched in miRNA clusters related to cell proliferation and angiogenesis. With network analyses, we identified differences in non-coding RNAs which give insight into age-dependent functionality of CPCs. By taking a quantitative computational approach, we aimed to uncover sources of CPC cell therapy variability.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Células Cultivadas , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo
13.
Arch Phys Med Rehabil ; 103(4): 665-675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34648804

RESUMO

OBJECTIVE: To characterize individuals with spinal cord injuries (SCI) who use outpatient physical therapy or community wellness services for locomotor training and predict the duration of services, controlling for demographic, injury, quality of life, and service and financial characteristics. We explore how the duration of services is related to locomotor strategy. DESIGN: Observational study of participants at 4 SCI Model Systems centers with survival. Weibull regression model to predict the duration of services. SETTING: Rehabilitation and community wellness facilities at 4 SCI Model Systems centers. PARTICIPANTS: Eligibility criteria were SCI or dysfunction resulting in motor impairment and the use of physical therapy or community wellness programs for locomotor/gait training. We excluded those who did not complete training or who experienced a disruption in training greater than 45 days. Our sample included 62 participants in conventional therapy and 37 participants in robotic exoskeleton training. INTERVENTIONS: Outpatient physical therapy or community wellness services for locomotor/gait training. MAIN OUTCOME MEASURES: SCI characteristics (level and completeness of injury) and the duration of services from medical records. Self-reported perceptions of SCI consequences using the SCI-Functional Index for basic mobility and SCI-Quality of Life measurement system for bowel difficulties, bladder difficulties, and pain interference. RESULTS: After controlling for predictors, the duration of services for the conventional therapy group was an average of 63% longer than for the robotic exoskeleton group, however each visit was 50% shorter in total time. Men had an 11% longer duration of services than women had. Participants with complete injuries had a duration of services that was approximately 1.72 times longer than participants with incomplete injuries. Perceived improvement was larger in the conventional group. CONCLUSIONS: Locomotor/gait training strategies are distinctive for individuals with SCI using a robotic exoskeleton in a community wellness facility as episodes are shorter but individual sessions are longer. Participants' preferences and the ability to pay for ongoing services may be critical factors associated with the duration of outpatient services.


Assuntos
Exoesqueleto Energizado , Traumatismos da Medula Espinal , Feminino , Marcha , Humanos , Masculino , Pacientes Ambulatoriais , Modalidades de Fisioterapia , Qualidade de Vida , Traumatismos da Medula Espinal/reabilitação
14.
J Cardiothorac Vasc Anesth ; 36(4): 940-951, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34801393

RESUMO

This special article is the fourteenth in an annual series for the Journal of Cardiothoracic and Vascular Anesthesia. The authors thank the Editor-in-Chief, Dr. Kaplan, and the editorial board for the opportunity to continue this series; namely, the research highlights of the past year in the specialty of cardiothoracic and vascular anesthesiology. The major themes selected for 2021 are outlined in this introduction, and each highlight is reviewed in detail in the main body of the article. The literature highlights in the specialty for 2021 begin with an update on structural heart disease, with a focus on updates in arrhythmia and aortic valve disorders. The second major theme is an update on coronary artery disease, with discussion of both medical and procedural management. The third major theme is focused on the perioperative management of patients with COVID-19, with the authors highlighting literature discussing the impact of the disease on the right ventricle and thromboembolic events. The fourth and final theme is an update in heart failure, with discussion of diverse aspects of this area. The themes selected for this fourteenth special article are only a few of the diverse advances in the specialty during 2021. These highlights will inform the reader of key updates on a variety of topics, leading to improvement of perioperative outcomes for patients with cardiothoracic and vascular disease.


Assuntos
Anestesia , Anestesiologia , COVID-19 , Humanos , SARS-CoV-2
15.
Spinal Cord ; 60(6): 522-532, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35094007

RESUMO

STUDY DESIGN: Clinical trial. OBJECTIVE: To demonstrate that a 12-week exoskeleton-based robotic gait training regimen can lead to a clinically meaningful improvement in independent gait speed, in community-dwelling participants with chronic incomplete spinal cord injury (iSCI). SETTING: Outpatient rehabilitation or research institute. METHODS: Multi-site (United States), randomized, controlled trial, comparing exoskeleton gait training (12 weeks, 36 sessions) with standard gait training or no gait training (2:2:1 randomization) in chronic iSCI (>1 year post injury, AIS-C, and D), with residual stepping ability. The primary outcome measure was change in robot-independent gait speed (10-meter walk test, 10MWT) post 12-week intervention. Secondary outcomes included: Timed-Up-and-Go (TUG), 6-min walk test (6MWT), Walking Index for Spinal Cord Injury (WISCI-II) (assistance and devices), and treating therapist NASA-Task Load Index. RESULTS: Twenty-five participants completed the assessments and training as assigned (9 Ekso, 10 Active Control, 6 Passive Control). Mean change in gait speed at the primary endpoint was not statistically significant. The proportion of participants with improvement in clinical ambulation category from home to community speed post-intervention was greatest in the Ekso group (>1/2 Ekso, 1/3 Active Control, 0 Passive Control, p < 0.05). Improvements in secondary outcome measures were not significant. CONCLUSIONS: Twelve weeks of exoskeleton robotic training in chronic SCI participants with independent stepping ability at baseline can improve clinical ambulatory status. Improvements in raw gait speed were not statistically significant at the group level, which may guide future trials for participant inclusion criteria. While generally safe and tolerable, larger gains in ambulation might be associated with higher risk for non-serious adverse events.


Assuntos
Exoesqueleto Energizado , Procedimentos Cirúrgicos Robóticos , Robótica , Traumatismos da Medula Espinal , Terapia por Exercício , Marcha , Humanos , Traumatismos da Medula Espinal/complicações , Caminhada
16.
J Neuroeng Rehabil ; 19(1): 115, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309686

RESUMO

Exoskeletons are externally worn motorized devices that assist with sit-to-stand and walking in individuals with motor and functional impairments. The Food & Drug Administration (FDA) has approved several of these technologies for clinical use however, there is limited evidence to guide optimal utilization in every day clinical practice. With the diversity of technologies & equipment available, it presents a challenge for clinicians to decide which device to use, when to initiate, how to implement these technologies with different patient presentations, and when to wean off the devices. Thus, we present a clinical utilization framework specific to exoskeletons with four aims.These aims are to assist with clinical decision making of when exoskeleton use is clinically indicated, identification of which device is most appropriate based on patient deficits and device characteristics, providing guidance on dosage parameters within a plan of care and guidance for reflection following utilization. This framework streamlines how clinicians can approach implementation through the synthesis of published evidence with appropriate clinical assessment & device selection to reflection for success and understanding of these innovative & complex technologies.


Assuntos
Exoesqueleto Energizado , Humanos , Caminhada
17.
J Neuroeng Rehabil ; 19(1): 51, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35655180

RESUMO

BACKGROUND: Stroke is a leading cause of serious gait impairments and restoring walking ability is a major goal of physical therapy interventions. Soft robotic exosuits are portable, lightweight, and unobtrusive assistive devices designed to improve the mobility of post-stroke individuals through facilitation of more natural paretic limb function during walking training. However, it is unknown whether long-term gait training using soft robotic exosuits will clinically impact gait function and quality of movement post-stroke. OBJECTIVE: The objective of this pilot study was to examine the therapeutic effects of soft robotic exosuit-augmented gait training on clinical and biomechanical gait outcomes in chronic post-stroke individuals. METHODS: Five post-stroke individuals received high intensity gait training augmented with a soft robotic exosuit, delivered in 18 sessions over 6-8 weeks. Performance based clinical outcomes and biomechanical gait quality parameters were measured at baseline, midpoint, and completion. RESULTS: Clinically meaningful improvements were observed in walking speed ([Formula: see text] < 0.05) and endurance ([Formula: see text] < 0.01) together with other traditional gait related outcomes. The gait quality measures including hip ([Formula: see text] < 0.01) and knee ([Formula: see text] < 0.05) flexion/extension exhibited an increase in range of motion in a symmetric manner ([Formula: see text] < 0.05). We also observed an increase in bilateral ankle angular velocities ([Formula: see text] < 0.05), suggesting biomechanical improvements in walking function. CONCLUSIONS: The results in this study offer preliminary evidence that a soft robotic exosuit can be a useful tool to augment high intensity gait training in a clinical setting. This study justifies more expanded research on soft exosuit technology with a larger post-stroke population for more reliable generalization. Trial registration This study is registered with ClinicalTrials.gov (ID: NCT04251091).


Assuntos
Robótica , Acidente Vascular Cerebral , Terapia por Exercício , Marcha , Humanos , Projetos Piloto , Acidente Vascular Cerebral/complicações , Sobreviventes
18.
J Neuroeng Rehabil ; 19(1): 60, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715823

RESUMO

BACKGROUND: Falls are a common complication experienced after a stroke and can cause serious detriments to physical health and social mobility, necessitating a dire need for intervention. Among recent advancements, wearable airbag technology has been designed to detect and mitigate fall impact. However, these devices have not been designed nor validated for the stroke population and thus, may inadequately detect falls in individuals with stroke-related motor impairments. To address this gap, we investigated whether population-specific training data and modeling parameters are required to pre-detect falls in a chronic stroke population. METHODS: We collected data from a wearable airbag's inertial measurement units (IMUs) from individuals with (n = 20 stroke) and without (n = 15 control) history of stroke while performing a series of falls (842 falls total) and non-falls (961 non-falls total) in a laboratory setting. A leave-one-subject-out crossvalidation was used to compare the performance of two identical machine learned models (adaptive boosting classifier) trained on cohort-dependent data (control or stroke) to pre-detect falls in the stroke cohort. RESULTS: The average performance of the model trained on stroke data (recall = 0.905, precision = 0.900) had statistically significantly better recall (P = 0.0035) than the model trained on control data (recall = 0.800, precision = 0.944), while precision was not statistically significantly different. Stratifying models trained on specific fall types revealed differences in pre-detecting anterior-posterior (AP) falls (stroke-trained model's F1-score was 35% higher, P = 0.019). Using activities of daily living as non-falls training data (compared to near-falls) significantly increased the AUC (Area under the receiver operating characteristic) for classifying AP falls for both models (P < 0.04). Preliminary analysis suggests that users with more severe stroke impairments benefit further from a stroke-trained model. The optimal lead time (time interval pre-impact to detect falls) differed between control- and stroke-trained models. CONCLUSIONS: These results demonstrate the importance of population sensitivity, non-falls data, and optimal lead time for machine learned pre-impact fall detection specific to stroke. Existing fall mitigation technologies should be challenged to include data of neurologically impaired individuals in model development to adequately detect falls in other high fall risk populations. Trial registration https://clinicaltrials.gov/ct2/show/NCT05076565 ; Unique Identifier: NCT05076565. Retrospectively registered on 13 October 2021.


Assuntos
Air Bags , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Humanos , Acidente Vascular Cerebral/complicações , Tecnologia
19.
J Neuroeng Rehabil ; 19(1): 144, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-36585676

RESUMO

BACKGROUND: Despite the benefits of physical activity for healthy physical and cognitive aging, 35% of adults over the age of 75 in the United States are inactive. Robotic exoskeleton-based exercise studies have shown benefits in improving walking function, but most are conducted in clinical settings with a neurologically impaired population. Emerging technology is starting to enable easy-to-use, lightweight, wearable robots, but their impact in the otherwise healthy older adult population remains mostly unknown. For the first time, this study investigates the feasibility and efficacy of using a lightweight, modular hip exoskeleton for in-community gait training in the older adult population to improve walking function. METHODS: Twelve adults over the age of 65 were enrolled in a gait training intervention involving twelve 30-min sessions using the Gait Enhancing and Motivating System for Hip in their own senior living community. RESULTS: Performance-based outcome measures suggest clinically significant improvements in balance, gait speed, and endurance following the exoskeleton training, and the device was safe and well tolerated. Gait speed below 1.0 m/s is an indicator of fall risk, and two out of the four participants below this threshold increased their self-selected gait speed over 1.0 m/s after intervention. Time spent in sedentary behavior also decreased significantly. CONCLUSIONS: This intervention resulted in greater improvements in speed and endurance than traditional exercise programs, in significantly less time. Together, our results demonstrated that exoskeleton-based gait training is an effective intervention and novel approach to encouraging older adults to exercise and reduce sedentary time, while improving walking function. Future work will focus on whether the device can be used independently long-term by older adults as an everyday exercise and community-use personal mobility device. Trial registration This study was retrospectively registered with ClinicalTrials.gov (ID: NCT05197127).


Assuntos
Exoesqueleto Energizado , Humanos , Idoso , Comportamento Sedentário , Vida Independente , Caminhada , Marcha , Terapia por Exercício/métodos
20.
Sensors (Basel) ; 22(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36015951

RESUMO

Sleep plays a critical role in stroke recovery. However, there are limited practices to measure sleep for individuals with stroke, thus inhibiting our ability to identify and treat poor sleep quality. Wireless, body-worn sensors offer a solution for continuous sleep monitoring. In this study, we explored the feasibility of (1) collecting overnight biophysical data from patients with subacute stroke using a simple sensor system and (2) constructing machine-learned algorithms to detect sleep stages. Ten individuals with stroke in an inpatient rehabilitation hospital wore two wireless sensors during a single night of sleep. Polysomnography served as ground truth to classify different sleep stages. A population model, trained on data from multiple patients and tested on data from a separate patient, performed poorly for this limited sample. Personal models trained on data from one patient and tested on separate data from the same patient demonstrated markedly improved performance over population models and research-grade wearable devices to detect sleep/wake. Ultimately, the heterogeneity of biophysical signals after stroke may present a challenge in building generalizable population models. Personal models offer a provisional method to capture high-resolution sleep metrics from simple wearable sensors by leveraging a single night of polysomnography data.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Dispositivos Eletrônicos Vestíveis , Humanos , Polissonografia/métodos , Sono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA