Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell ; 133(1): 103-15, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394993

RESUMO

RanBP2 is a nucleoporin with SUMO E3 ligase activity that functions in both nucleocytoplasmic transport and mitosis. However, the biological relevance of RanBP2 and the in vivo targets of its E3 ligase activity are unknown. Here we show that animals with low amounts of RanBP2 develop severe aneuploidy in the absence of overt transport defects. The main chromosome segregation defect in cells from these mice is anaphase-bridge formation. Topoisomerase IIalpha (Topo IIalpha), which decatenates sister centromeres prior to anaphase onset to prevent bridges, fails to accumulate at inner centromeres when RanBP2 levels are low. We find that RanBP2 sumoylates Topo IIalpha in mitosis and that this modification is required for its proper localization to inner centromeres. Furthermore, mice with low amounts of RanBP2 are highly sensitive to tumor formation. Together, these data identify RanBP2 as a chromosomal instability gene that regulates Topo IIalpha by sumoylation and suppresses tumorigenesis.


Assuntos
Antígenos de Neoplasias/metabolismo , Centrômero/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Chaperonas Moleculares/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Anáfase , Aneuploidia , Animais , Carcinógenos , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Camundongos Knockout , Mitose , Chaperonas Moleculares/genética , Mutação , Neoplasias/induzido quimicamente , Neoplasias/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Estrutura Terciária de Proteína , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
2.
Nature ; 530(7589): 184-9, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26840489

RESUMO

Cellular senescence, a stress-induced irreversible growth arrest often characterized by expression of p16(Ink4a) (encoded by the Ink4a/Arf locus, also known as Cdkn2a) and a distinctive secretory phenotype, prevents the proliferation of preneoplastic cells and has beneficial roles in tissue remodelling during embryogenesis and wound healing. Senescent cells accumulate in various tissues and organs over time, and have been speculated to have a role in ageing. To explore the physiological relevance and consequences of naturally occurring senescent cells, here we use a previously established transgene, INK-ATTAC, to induce apoptosis in p16(Ink4a)-expressing cells of wild-type mice by injection of AP20187 twice a week starting at one year of age. We show that compared to vehicle alone, AP20187 treatment extended median lifespan in both male and female mice of two distinct genetic backgrounds. The clearance of p16(Ink4a)-positive cells delayed tumorigenesis and attenuated age-related deterioration of several organs without apparent side effects, including kidney, heart and fat, where clearance preserved the functionality of glomeruli, cardio-protective KATP channels and adipocytes, respectively. Thus, p16(Ink4a)-positive cells that accumulate during adulthood negatively influence lifespan and promote age-dependent changes in several organs, and their therapeutic removal may be an attractive approach to extend healthy lifespan.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Saúde , Longevidade/fisiologia , Adipócitos/citologia , Adipócitos/patologia , Adipócitos/fisiologia , Animais , Apoptose , Separação Celular , Transformação Celular Neoplásica/patologia , Células Epiteliais/citologia , Células Epiteliais/patologia , Feminino , Rim/citologia , Rim/patologia , Rim/fisiologia , Rim/fisiopatologia , Lipodistrofia/patologia , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/metabolismo , Miocárdio/patologia , Especificidade de Órgãos , Células-Tronco/citologia , Células-Tronco/patologia , Fatores de Tempo
3.
Gastroenterology ; 157(1): 210-226.e12, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30878468

RESUMO

BACKGROUND & AIMS: The CCNE1 locus, which encodes cyclin E1, is amplified in many types of cancer cells and is activated in hepatocellular carcinomas (HCCs) from patients infected with hepatitis B virus or adeno-associated virus type 2, due to integration of the virus nearby. We investigated cell-cycle and oncogenic effects of cyclin E1 overexpression in tissues of mice. METHODS: We generated mice with doxycycline-inducible expression of Ccne1 (Ccne1T mice) and activated overexpression of cyclin E1 from age 3 weeks onward. At 14 months of age, livers were collected from mice that overexpress cyclin E1 and nontransgenic mice (controls) and analyzed for tumor burden and by histology. Mouse embryonic fibroblasts (MEFs) and hepatocytes from Ccne1T and control mice were analyzed to determine the extent to which cyclin E1 overexpression perturbs S-phase entry, DNA replication, and numbers and structures of chromosomes. Tissues from 4-month-old Ccne1T and control mice (at that age were free of tumors) were analyzed for chromosome alterations, to investigate the mechanisms by which cyclin E1 predisposes hepatocytes to transformation. RESULTS: Ccne1T mice developed more hepatocellular adenomas and HCCs than control mice. Tumors developed only in livers of Ccne1T mice, despite high levels of cyclin E1 in other tissues. Ccne1T MEFs had defects that promoted chromosome missegregation and aneuploidy, including incomplete replication of DNA, centrosome amplification, and formation of nonperpendicular mitotic spindles. Whereas Ccne1T mice accumulated near-diploid aneuploid cells in multiple tissues and organs, polyploidization was observed only in hepatocytes, with losses and gains of whole chromosomes, DNA damage, and oxidative stress. CONCLUSIONS: Livers, but not other tissues of mice with inducible overexpression of cyclin E1, develop tumors. More hepatocytes from the cyclin E1-overexpressing mice were polyploid than from control mice, and had losses or gains of whole chromosomes, DNA damage, and oxidative stress; all of these have been observed in human HCC cells. The increased risk of HCC in patients with hepatitis B virus or adeno-associated virus type 2 infection might involve activation of cyclin E1 and its effects on chromosomes and genomes of liver cells.


Assuntos
Adenoma de Células Hepáticas/genética , Carcinoma Hepatocelular/genética , Instabilidade Cromossômica/genética , Ciclina E/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , Proteínas Oncogênicas/genética , Adenoma de Células Hepáticas/patologia , Adenoma de Células Hepáticas/virologia , Animais , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/virologia , Estruturas Cromossômicas , Dano ao DNA/genética , Replicação do DNA , Dependovirus , Fibroblastos , Hepatite B Crônica , Hepatócitos , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/virologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Estresse Oxidativo/genética , Infecções por Parvoviridae , Parvovirinae , Poliploidia , Pontos de Checagem da Fase S do Ciclo Celular
4.
EMBO J ; 33(13): 1438-53, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24825348

RESUMO

Mice overexpressing the mitotic checkpoint kinase gene BubR1 live longer, whereas mice hypomorphic for BubR1 (BubR1(H/H)) live shorter and show signs of accelerated aging. As wild-type mice age, BubR1 levels decline in many tissues, a process that is proposed to underlie normal aging and age-related diseases. Understanding why BubR1 declines with age and how to slow this process is therefore of considerable interest. The sirtuins (SIRT1-7) are a family of NAD(+)-dependent deacetylases that can delay age-related diseases. Here, we show that the loss of BubR1 levels with age is due to a decline in NAD(+) and the ability of SIRT2 to maintain lysine-668 of BubR1 in a deacetylated state, which is counteracted by the acetyltransferase CBP. Overexpression of SIRT2 or treatment of mice with the NAD(+) precursor nicotinamide mononucleotide (NMN) increases BubR1 abundance in vivo. Overexpression of SIRT2 in BubR1(H/H) animals increases median lifespan, with a greater effect in male mice. Together, these data indicate that further exploration of the potential of SIRT2 and NAD(+) to delay diseases of aging in mammals is warranted.


Assuntos
Longevidade/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Sirtuína 2/metabolismo , Animais , Proteínas de Ciclo Celular , Indução Enzimática/fisiologia , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Knockout , NAD/genética , NAD/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sirtuína 2/genética
5.
PLoS Genet ; 8(12): e1003138, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300461

RESUMO

Mosaic Variegated Aneuploidy (MVA) syndrome is a rare autosomal recessive disorder characterized by inaccurate chromosome segregation and high rates of near-diploid aneuploidy. Children with MVA syndrome die at an early age, are cancer prone, and have progeroid features like facial dysmorphisms, short stature, and cataracts. The majority of MVA cases are linked to mutations in BUBR1, a mitotic checkpoint gene required for proper chromosome segregation. Affected patients either have bi-allelic BUBR1 mutations, with one allele harboring a missense mutation and the other a nonsense mutation, or mono-allelic BUBR1 mutations combined with allelic variants that yield low amounts of wild-type BubR1 protein. Parents of MVA patients that carry single allele mutations have mild mitotic defects, but whether they are at risk for any of the pathologies associated with MVA syndrome is unknown. To address this, we engineered a mouse model for the nonsense mutation 2211insGTTA (referred to as GTTA) found in MVA patients with bi-allelic BUBR1 mutations. Here we report that both the median and maximum lifespans of the resulting BubR1(+/GTTA) mice are significantly reduced. Furthermore, BubR1(+/GTTA) mice develop several aging-related phenotypes at an accelerated rate, including cataract formation, lordokyphosis, skeletal muscle wasting, impaired exercise ability, and fat loss. BubR1(+/GTTA) mice develop mild aneuploidies and show enhanced growth of carcinogen-induced tumors. Collectively, these data demonstrate that the BUBR1 GTTA mutation compromises longevity and healthspan, raising the interesting possibility that mono-allelic changes in BUBR1 might contribute to differences in aging rates in the general population.


Assuntos
Envelhecimento/genética , Transtornos Cromossômicos/genética , Longevidade/genética , Proteínas Serina-Treonina Quinases/genética , Alelos , Animais , Proteínas de Ciclo Celular , Transtornos Cromossômicos/fisiopatologia , Humanos , Camundongos , Camundongos Transgênicos , Mosaicismo , Mutação , Fenótipo , Proteínas Serina-Treonina Quinases/fisiologia
6.
PLoS Genet ; 6(9): e1001147, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20941357

RESUMO

Chromosome missegregation in germ cells is an important cause of unexplained infertility, miscarriages, and congenital birth defects in humans. However, the molecular defects that lead to production of aneuploid gametes are largely unknown. Cdc20, the activating subunit of the anaphase-promoting complex/cyclosome (APC/C), initiates sister-chromatid separation by ordering the destruction of two key anaphase inhibitors, cyclin B1 and securin, at the transition from metaphase to anaphase. The physiological significance and full repertoire of functions of mammalian Cdc20 are unclear at present, mainly because of the essential nature of this protein in cell cycle progression. To bypass this problem we generated hypomorphic mice that express low amounts of Cdc20. These mice are healthy and have a normal lifespan, but females produce either no or very few offspring, despite normal folliculogenesis and fertilization rates. When mated with wild-type males, hypomorphic females yield nearly normal numbers of fertilized eggs, but as these embryos develop, they become malformed and rarely reach the blastocyst stage. In exploring the underlying mechanism, we uncover that the vast majority of these embryos have abnormal chromosome numbers, primarily due to chromosome lagging and chromosome misalignment during meiosis I in the oocyte. Furthermore, cyclin B1, cyclin A2, and securin are inefficiently degraded in metaphase I; and anaphase I onset is markedly delayed. These results demonstrate that the physiologically effective threshold level of Cdc20 is high for female meiosis I and identify Cdc20 hypomorphism as a mechanism for chromosome missegregation and formation of aneuploid gametes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fertilidade/genética , Meiose , Aneuploidia , Animais , Blastocisto/metabolismo , Blastocisto/patologia , Proteínas de Transporte/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Cromossomos de Mamíferos/metabolismo , Ciclinas/metabolismo , Feminino , Fertilização , Dosagem de Genes/genética , Infertilidade Feminina/genética , Masculino , Metáfase , Camundongos , Camundongos Mutantes , Oócitos/metabolismo , Oócitos/patologia , Oogênese/genética , Processamento de Proteína Pós-Traducional , Securina , Espermatogênese
7.
Nat Genet ; 36(7): 744-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15208629

RESUMO

Faithful segregation of replicated chromosomes is essential for maintenance of genetic stability and seems to be monitored by several mitotic checkpoints. Various components of these checkpoints have been identified in mammals, but their physiological relevance is largely unknown. Here we show that mutant mice with low levels of the spindle assembly checkpoint protein BubR1 develop progressive aneuploidy along with a variety of progeroid features, including short lifespan, cachectic dwarfism, lordokyphosis, cataracts, loss of subcutaneous fat and impaired wound healing. Graded reduction of BubR1 expression in mouse embryonic fibroblasts causes increased aneuploidy and senescence. Male and female mutant mice have defects in meiotic chromosome segregation and are infertile. Natural aging of wild-type mice is marked by decreased expression of BubR1 in multiple tissues, including testis and ovary. These results suggest a role for BubR1 in regulating aging and infertility.


Assuntos
Envelhecimento/genética , Infertilidade Feminina/genética , Infertilidade Masculina/genética , Proteínas Quinases/fisiologia , Aneuploidia , Animais , Proteínas de Ciclo Celular , Feminino , Masculino , Camundongos , Camundongos Mutantes , Fenótipo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases
8.
Nat Commun ; 14(1): 2983, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37225693

RESUMO

PTEN is a multifaceted tumor suppressor that is highly sensitive to alterations in expression or function. The PTEN C-tail domain, which is rich in phosphorylation sites, has been implicated in PTEN stability, localization, catalytic activity, and protein interactions, but its role in tumorigenesis remains unclear. To address this, we utilized several mouse strains with nonlethal C-tail mutations. Mice homozygous for a deletion that includes S370, S380, T382 and T383 contain low PTEN levels and hyperactive AKT but are not tumor prone. Analysis of mice containing nonphosphorylatable or phosphomimetic versions of S380, a residue hyperphosphorylated in human gastric cancers, reveal that PTEN stability and ability to inhibit PI3K-AKT depends on dynamic phosphorylation-dephosphorylation of this residue. While phosphomimetic S380 drives neoplastic growth in prostate by promoting nuclear accumulation of ß-catenin, nonphosphorylatable S380 is not tumorigenic. These data suggest that C-tail hyperphosphorylation creates oncogenic PTEN and is a potential target for anti-cancer therapy.


Assuntos
Carcinogênese , PTEN Fosfo-Hidrolase , Animais , Humanos , Masculino , Camundongos , Carcinogênese/genética , Homozigoto , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , PTEN Fosfo-Hidrolase/genética , Fosforilação
9.
Nat Commun ; 13(1): 3722, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764649

RESUMO

Super-enhancers regulate genes with important functions in processes that are cell type-specific or define cell identity. Mouse embryonic fibroblasts establish 40 senescence-associated super-enhancers regardless of how they become senescent, with 50 activated genes located in the vicinity of these enhancers. Here we show, through gene knockdown and analysis of three core biological properties of senescent cells that a relatively large number of senescence-associated super-enhancer-regulated genes promote survival of senescent mouse embryonic fibroblasts. Of these, Mdm2, Rnase4, and Ang act by suppressing p53-mediated apoptosis through various mechanisms that are also engaged in response to DNA damage. MDM2 and RNASE4 transcription is also elevated in human senescent fibroblasts to restrain p53 and promote survival. These insights identify key survival mechanisms of senescent cells and provide molecular entry points for the development of targeted therapeutics that eliminate senescent cells at sites of pathology.


Assuntos
Fibroblastos , Proteína Supressora de Tumor p53 , Animais , Apoptose/genética , Senescência Celular/genética , Dano ao DNA , Fibroblastos/fisiologia , Camundongos , Proteína Supressora de Tumor p53/genética
10.
J Cell Biol ; 172(4): 529-40, 2006 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-16476774

RESUMO

Aging is a highly complex biological process that is believed to involve multiple mechanisms. Mice that have small amounts of the mitotic checkpoint protein BubR1 age much faster than normal mice, but whether other mitotic checkpoint genes function to prevent the early onset of aging is unknown. In this study, we show that several aging-associated phenotypes appear early in mice that are double haploinsufficient for the mitotic checkpoint genes Bub3 and Rae1 but not in mice that are single haploinsufficient for these genes. Mouse embryonic fibroblasts (MEFs) from Bub3/Rae1 haploinsufficient mice undergo premature senescence and accumulate high levels of p19, p53, p21, and p16, whereas MEFs from single haploinsufficient mice do not. Furthermore, although BubR1 hypomorphic mice have less aneuploidy than Bub3/Rae1 haploinsufficient mice, they age much faster. Our findings suggest that early onset of aging-associated phenotypes in mice with mitotic checkpoint gene defects is linked to cellular senescence and activation of the p53 and p16 pathways rather than to aneuploidy.


Assuntos
Senilidade Prematura/genética , Proteínas de Ciclo Celular/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Aneuploidia , Animais , Proteínas Cromossômicas não Histona , Haplótipos , Camundongos , Camundongos Knockout , Camundongos Mutantes , Mutação , Neoplasias/fisiopatologia , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose
11.
Nature ; 438(7070): 1036-9, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16355229

RESUMO

Cdc20 and Cdh1 are the activating subunits of the anaphase-promoting complex (APC), an E3 ubiquitin ligase that drives cells into anaphase by inducing degradation of cyclin B and the anaphase inhibitor securin. To prevent chromosome missegregation, APC activity directed against these mitotic regulators must be inhibited until all chromosomes are properly attached to the mitotic spindle. Here we show that in mitosis timely destruction of securin by APC is regulated by the nucleocytoplasmic transport factors Rae1 and Nup98. We show that combined Rae1 and Nup98 haploinsufficiency in mice results in premature separation of sister chromatids, severe aneuploidy and untimely degradation of securin. We find that Rae1 and Nup98 form a complex with Cdh1-activated APC (APC(Cdh1)) in early mitosis and specifically inhibit APC(Cdh1)-mediated ubiquitination of securin. Dissociation of Rae1 and Nup98 from APC(Cdh1) coincides with the release of the mitotic checkpoint protein BubR1 from Cdc20-activated APC (APC(Cdc20)) at the metaphase to anaphase transition. Together, our results suggest that Rae1 and Nup98 are temporal regulators of APC(Cdh1) that maintain euploidy by preventing unscheduled degradation of securin.


Assuntos
Aneuploidia , Proteínas de Transporte/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Processamento de Proteína Pós-Traducional , Ciclossomo-Complexo Promotor de Anáfase , Animais , Células Cultivadas , Segregação de Cromossomos , Fibroblastos , Células HeLa , Humanos , Cariotipagem , Camundongos , Mitose , Complexos Multiproteicos/metabolismo , Não Disjunção Genética , Proteínas Associadas à Matriz Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Securina , Ubiquitina/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo
12.
Science ; 374(6567): eabb3420, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34709885

RESUMO

Immune cells identify and destroy damaged cells to prevent them from causing cancer or other pathologies by mechanisms that remain poorly understood. Here, we report that the cell-cycle inhibitor p21 places cells under immunosurveillance to establish a biological timer mechanism that controls cell fate. p21 activates retinoblastoma protein (Rb)­dependent transcription at select gene promoters to generate a complex bioactive secretome, termed p21-activated secretory phenotype (PASP). The PASP includes the chemokine CXCL14, which promptly attracts macrophages. These macrophages disengage if cells normalize p21 within 4 days, but if p21 induction persists, they polarize toward an M1 phenotype and lymphocytes mount a cytotoxic T cell response to eliminate target cells, including preneoplastic cells. Thus, p21 concurrently induces proliferative arrest and immunosurveillance of cells under duress.


Assuntos
Senescência Celular , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Vigilância Imunológica , Animais , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Quimiocinas CXC/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Genes ras , Hepatócitos/imunologia , Hepatócitos/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína do Retinoblastoma/metabolismo , Estresse Fisiológico , Linfócitos T Citotóxicos/imunologia , Transcrição Gênica
13.
J Clin Invest ; 130(1): 171-188, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738183

RESUMO

Mosaic-variegated aneuploidy (MVA) syndrome is a rare childhood disorder characterized by biallelic BUBR1, CEP57, or TRIP13 aberrations; increased chromosome missegregation; and a broad spectrum of clinical features, including various cancers, congenital defects, and progeroid pathologies. To investigate the mechanisms underlying this disorder and its phenotypic heterogeneity, we mimicked the BUBR1L1012P mutation in mice (BubR1L1002P) and combined it with 2 other MVA variants, BUBR1X753 and BUBR1H, generating a truncated protein and low amounts of wild-type protein, respectively. Whereas BubR1X753/L1002P and BubR1H/X753 mice died prematurely, BubR1H/L1002P mice were viable and exhibited many MVA features, including cancer predisposition and various progeroid phenotypes, such as short lifespan, dwarfism, lipodystrophy, sarcopenia, and low cardiac stress tolerance. Strikingly, although these mice had a reduction in total BUBR1 and spectrum of MVA phenotypes similar to that of BubR1H/H mice, several progeroid pathologies were attenuated in severity, which in skeletal muscle coincided with reduced senescence-associated secretory phenotype complexity. Additionally, mice carrying monoallelic BubR1 mutations were prone to select MVA-related pathologies later in life, with predisposition to sarcopenia correlating with mTORC1 hyperactivity. Together, these data demonstrate that BUBR1 allelic effects beyond protein level and aneuploidy contribute to disease heterogeneity in both MVA patients and heterozygous carriers of MVA mutations.


Assuntos
Alelos , Proteínas de Ciclo Celular/genética , Transtornos Cromossômicos/genética , Progéria/genética , Proteínas Serina-Treonina Quinases/genética , Envelhecimento , Animais , Neoplasias Pulmonares/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Mosaicismo , Mutação , Fenótipo
14.
Nat Cancer ; 1(10): 1010-1024, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-34841254

RESUMO

FoxM1 activates genes that regulate S-G2-M cell-cycle progression and, when overexpressed, is associated with poor clinical outcome in multiple cancers. Here we identify FoxM1 as a tumor suppressor in mice that, through its N-terminal domain, binds to and inhibits Ect2 to limit the activity of RhoA GTPase and its effector mDia1, a catalyst of cortical actin nucleation. FoxM1 insufficiency impedes centrosome movement through excessive cortical actin polymerization, thereby causing the formation of non-perpendicular mitotic spindles that missegregate chromosomes and drive tumorigenesis in mice. Importantly, low FOXM1 expression correlates with RhoA GTPase hyperactivity in multiple human cancer types, indicating that suppression of the newly discovered Ect2-RhoAmDia1 oncogenic axis by FoxM1 is clinically relevant. Furthermore, by dissecting the domain requirements through which FoxM1 inhibits Ect2 GEF activity, we provide mechanistic insight for the development of pharmacological approaches that target protumorigenic RhoA activity.


Assuntos
Actinas , Proteína Forkhead Box M1/metabolismo , Neoplasias , Actinas/metabolismo , Animais , GTP Fosfo-Hidrolases , Camundongos , Neoplasias/genética , Transdução de Sinais
15.
J Cell Biol ; 160(3): 341-53, 2003 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-12551952

RESUMO

The WD-repeat proteins Rae1 and Bub3 show extensive sequence homology, indicative of functional similarity. However, previous studies have suggested that Rae1 is involved in the mRNA export pathway and Bub3 in the mitotic checkpoint. To determine the in vivo roles of Rae1 and Bub3 in mammals, we generated knockout mice that have these genes deleted individually or in combination. Here we show that haplo-insufficiency of either Rae1 or Bub3 results in a similar phenotype involving mitotic checkpoint defects and chromosome missegregation. We also show that overexpression of Rae1 can correct for Rae1 haplo-insufficiency and, surprisingly, Bub3 haplo-insufficiency. Rae1-null and Bub3-null mice are embryonic lethal, although cells from these mice did not have a detectable defect in nuclear export of mRNA. Unlike null mice, compound haplo-insufficient Rae1/Bub3 mice are viable. However, cells from these mice exhibit much greater rates of premature sister chromatid separation and chromosome missegregation than single haplo-insufficient cells. Finally, we show that mice with mitotic checkpoint defects are more susceptible to dimethylbenzanthrene-induced tumorigenesis than wild-type mice. Thus, our data demonstrate a novel function for Rae1 and characterize Rae1 and Bub3 as related proteins with essential, overlapping, and cooperating roles in the mitotic checkpoint.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Aberrações Cromossômicas/embriologia , Segregação de Cromossomos/genética , Genes cdc/fisiologia , Mitose/genética , Proteínas Associadas à Matriz Nuclear/deficiência , Proteínas de Transporte Nucleocitoplasmático/deficiência , Transporte Ativo do Núcleo Celular/genética , Aneuploidia , Animais , Proteínas de Ciclo Celular/genética , Transformação Celular Neoplásica/genética , Células Cultivadas , Proteínas Cromossômicas não Histona , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Letais/fisiologia , Predisposição Genética para Doença/genética , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Mensageiro/metabolismo
16.
Nat Commun ; 9(1): 2736, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013081

RESUMO

Cells respond to cytotoxic DNA double-strand breaks by recruiting repair proteins to the damaged site. Phosphorylation of the histone variant H2AX at S139 and Y142 modulate its interaction with downstream DNA repair proteins and their recruitment to DNA lesions. Here we report ATM-dependent ZNF506 localization to the lesion through MDC1 following DNA damage. ZNF506, in turn, recruits the protein phosphatase EYA, resulting in dephosphorylation of H2AX at Y142, which further facilitates the recruitment of MDC1 and other downstream repair factors. Thus, ZNF506 regulates the early dynamic signaling in the DNA damage response (DDR) pathway and controls progressive downstream signal amplification. Cells lacking ZNF506 or harboring mutations found in cancer patient samples are more sensitive to radiation, offering a potential new therapeutic option for cancers with mutations in this pathway. Taken together, these results demonstrate how the DDR pathway is orchestrated by ZNF506 to maintain genomic integrity.


Assuntos
Reparo do DNA , Retroalimentação Fisiológica , Regulação Leucêmica da Expressão Gênica , Histonas/genética , Fatores de Transcrição Kruppel-Like/genética , Leucemia Prolinfocítica de Células T/genética , Proteínas Repressoras/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linfócitos B/metabolismo , Linfócitos B/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Dano ao DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células HEK293 , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Leucemia Prolinfocítica de Células T/metabolismo , Leucemia Prolinfocítica de Células T/mortalidade , Leucemia Prolinfocítica de Células T/patologia , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Fosforilação , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Transdução de Sinais , Análise de Sobrevida , Transativadores/genética , Transativadores/metabolismo
17.
J Clin Invest ; 128(8): 3517-3534, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30035751

RESUMO

A homozygous truncating frameshift mutation in CEP57 (CEP57T/T) has been identified in a subset of mosaic-variegated aneuploidy (MVA) patients; however, the physiological roles of the centrosome-associated protein CEP57 that contribute to disease are unknown. To investigate these, we have generated a mouse model mimicking this disease mutation. Cep57T/T mice died within 24 hours after birth with short, curly tails and severely impaired vertebral ossification. Osteoblasts in lumbosacral vertebrae of Cep57T/T mice were deficient for Fgf2, a Cep57 binding partner implicated in diverse biological processes, including bone formation. Furthermore, a broad spectrum of tissues of Cep57T/T mice had severe aneuploidy at birth, consistent with the MVA patient phenotype. Cep57T/T mouse embryonic fibroblasts and patient-derived skin fibroblasts failed to undergo centrosome maturation in G2 phase, causing premature centriole disjunction, centrosome amplification, aberrant spindle formation, and high rates of chromosome missegregation. Mice heterozygous for the truncating frameshift mutation or a Cep57-null allele were overtly indistinguishable from WT mice despite reduced Cep57 protein levels, yet prone to aneuploidization and cancer, with tumors lacking evidence for loss of heterozygosity. This study identifies Cep57 as a haploinsufficient tumor suppressor with biologically diverse roles in centrosome maturation and Fgf2-mediated bone formation.


Assuntos
Proteínas de Transporte/metabolismo , Transtornos Cromossômicos/metabolismo , Mutação da Fase de Leitura , Haploinsuficiência , Neoplasias/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Centrossomo/metabolismo , Centrossomo/patologia , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Mosaicismo , Neoplasias/genética , Neoplasias/patologia , Proteínas Supressoras de Tumor/genética
18.
Nat Cell Biol ; 20(4): 455-464, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29581593

RESUMO

Cells respond to cytotoxic DNA double-strand breaks (DSBs) by recruiting DNA repair proteins to the damaged site. This recruitment is dependent on ubiquitylation of adjacent chromatin areas by E3 ubiquitin ligases such as RNF8 and RNF168, which are recruited sequentially to the DSBs. However, it is unclear what dictates the sequential order and recruits RNF168 to the DNA lesion. Here, we reveal that L3MBTL2 (lethal(3)malignant brain tumour-like protein 2) is the missing link between RNF8 and RNF168. We found that L3MBTL2 is recruited by MDC1 and subsequently ubiquitylated by RNF8. Ubiquitylated L3MBTL2, in turn, facilitates recruitment of RNF168 to the DNA lesion and promotes DNA DSB repair. These results identify L3MBTL2 as a key target of RNF8 following DNA damage and demonstrates how the DNA damage response pathway is orchestrated by ubiquitin signalling.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Osteossarcoma/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Fosforilação , Transporte Proteico , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
19.
J Clin Invest ; 126(2): 543-59, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26731471

RESUMO

The nuclear pore complex protein NUP88 is frequently elevated in aggressive human cancers and correlates with reduced patient survival; however, it is unclear whether and how NUP88 overexpression drives tumorigenesis. Here, we show that mice overexpressing NUP88 are cancer prone and form intestinal tumors. To determine whether overexpression of NUP88 drives tumorigenesis, we engineered transgenic mice with doxycycline-inducible expression of Nup88. Surprisingly, NUP88 overexpression did not alter global nuclear transport, but was a potent inducer of aneuploidy and chromosomal instability. We determined that NUP88 and the nuclear transport factors NUP98 and RAE1 comprise a regulatory network that inhibits premitotic activity of the anaphase-promoting complex/cyclosome (APC/C). When overexpressed, NUP88 sequesters NUP98-RAE1 away from APC/CCDH1, triggering proteolysis of polo-like kinase 1 (PLK1), a tumor suppressor and multitasking mitotic kinase. Premitotic destruction of PLK1 disrupts centrosome separation, causing mitotic spindle asymmetry, merotelic microtubule-kinetochore attachments, lagging chromosomes, and aneuploidy. These effects were replicated by PLK1 insufficiency, indicating that PLK1 is responsible for the mitotic defects associated with NUP88 overexpression. These findings demonstrate that the NUP88-NUP98-RAE1-APC/CCDH1 axis contributes to aneuploidy and suggest that it may be deregulated in the initiating stages of a broad spectrum of human cancers.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Aneuploidia , Núcleo Celular/metabolismo , Cromossomos de Mamíferos/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/genética , Ciclossomo-Complexo Promotor de Anáfase/genética , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Centrossomo/metabolismo , Cromossomos de Mamíferos/genética , Humanos , Camundongos , Camundongos Knockout , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo
20.
Nat Cell Biol ; 18(7): 814-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27240320

RESUMO

Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation. Docking of Dlg1-Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9-Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrossomo/metabolismo , Cinesinas/metabolismo , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Polos do Fuso/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proteína 1 Homóloga a Discs-Large , Humanos , Camundongos , Mitose/genética , PTEN Fosfo-Hidrolase/genética , Proteínas Associadas SAP90-PSD95
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA