RESUMO
Animals that depend on ephemeral, patchily distributed prey often use public information to locate resource patches. The use of public information can lead to the aggregation of foragers at prey patches, a mechanism known as local enhancement. However, when ephemeral resources are distributed over large areas, foragers may also need to increase search efficiency, and thus apply social strategies when sampling the landscape. While sensory networks of visually oriented animals have already been confirmed, we lack an understanding of how acoustic eavesdropping adds to the formation of sensory networks. Here we radio-tracked a total of 81 aerial-hawking bats at very high spatiotemporal resolution during five sessions over 3 y, recording up to 19 individuals simultaneously. Analyses of interactive flight behavior provide conclusive evidence that bats form temporary mobile sensory networks by adjusting their movements to neighboring conspecifics while probing the airspace for prey. Complementary agent-based simulations confirmed that the observed movement patterns can lead to the formation of mobile sensory networks, and that bats located prey faster when networking than when relying only on local enhancement or searching solitarily. However, the benefit of networking diminished with decreasing group size. The combination of empirical analyses and simulations elucidates how animal groups use acoustic information to efficiently locate unpredictable and ephemeral food patches. Our results highlight that declining local populations of social foragers may thus suffer from Allee effects that increase the risk of collapses under global change scenarios, like insect decline and habitat degradation.
Assuntos
Quirópteros , Eulipotyphla , Comportamento Predatório , Animais , Quirópteros/fisiologia , Ecolocação , Ecossistema , Eulipotyphla/fisiologia , Voo Animal , Comportamento Predatório/fisiologiaRESUMO
Unravelling the intricate mechanisms that govern community coexistence remains a daunting challenge, particularly amidst ongoing environmental change. Individual physiology and metabolism are often studied to understand the response of individual animals to environmental change. However, this perspective is currently largely lacking in community ecology. We argue that the integration of individual metabolism into community theory can offer new insights into coexistence. We present the first individual-based metabolic community model for a terrestrial mammal community to simulate energy dynamics and home range behaviour in different environments. Using this model, we investigate how ecologically similar species coexist and maintain their energy balance under food competition. Only if individuals of different species are able to balance their incoming and outgoing energy over the long-term will they be able to coexist. After thoroughly testing and validating the model against real-world patterns such as of home range dynamics and field metabolic rates, we applied it as a case study to scenarios of habitat fragmentation - a widely discussed topic in biodiversity research. First, comparing single-species simulations with community simulations, we find that the effect of habitat fragmentation on populations is strongly context-dependent. While populations of species living alone in the landscape were mostly positively affected by fragmentation, the diversity of a community of species was highest under medium fragmentation scenarios. Under medium fragmentation, energy balance and reproductive investment were also most similar among species. We therefore suggest that similarity in energy balance among species promotes coexistence. We argue that energetics should be part of community ecology theory, as the relative energetic status and reproductive investment can reveal why and under what environmental conditions coexistence is likely to occur. As a result, landscapes can potentially be protected and designed to maximize coexistence. The metabolic community model presented here can be a promising tool to investigate other scenarios of environmental change or other species communities to further disentangle global change effects and preserve biodiversity.
Assuntos
Biodiversidade , Metabolismo Energético , Modelos Biológicos , Animais , Mamíferos/fisiologia , Ecossistema , Comportamento de Retorno ao Território VitalRESUMO
AbstractThe pace-of-life syndrome (POLS) hypothesis posits that suites of traits are correlated along a slow-fast continuum owing to life history trade-offs. Despite widespread adoption, environmental conditions driving the emergence of POLS remain unclear. A recently proposed conceptual framework of POLS suggests that a slow-fast continuum should align to fluctuations in density-dependent selection. We tested three key predictions made by this framework with an eco-evolutionary agent-based population model. Selection acted on responsiveness (behavioral trait) to interpatch resource differences and the reproductive investment threshold (life history trait). Across environments with density fluctuations of different magnitudes, we observed the emergence of a common axis of trait covariation between and within populations (i.e., the evolution of a POLS). Slow-type (fast-type) populations with high (low) responsiveness and low (high) reproductive investment threshold were selected at high (low) population densities and less (more) intense and frequent density fluctuations. In support of the predictions, fast-type populations contained a higher degree of variation in traits and were associated with higher intrinsic reproductive rate (r0) and higher sensitivity to intraspecific competition (γ), pointing to a universal trade-off. While our findings support that POLS aligns with density-dependent selection, we discuss possible mechanisms that may lead to alternative evolutionary pathways.
Assuntos
Características de História de Vida , Fenótipo , ReproduçãoRESUMO
Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.
RESUMO
Early-life conditions have critical, long-lasting effects on the fate of individuals, yet early-life activity has rarely been linked to subsequent survival of animals in the wild. Using high-resolution GPS and body-acceleration data of 93 juvenile white storks (Ciconia ciconia), we examined the links between behaviour during both pre-fledging and post-fledging (fledging-to-migration) periods and subsequent first-year survival. Juvenile daily activity (based on overall dynamic body acceleration) showed repeatable between-individual variation, the juveniles' pre- and post-fledging activity levels were correlated and both were positively associated with subsequent survival. Daily activity increased gradually throughout the post-fledging period, and the relationship between post-fledging activity and survival was stronger in individuals who increased their daily activity level faster (an interaction effect). We suggest that high activity profiles signified individuals with increased pre-migratory experience, higher individual quality and perhaps more proactive personality, which could underlie their superior survival rates. The duration of individuals' fledging-to-migration periods had a hump-shaped relationship with survival: higher survival was associated with intermediate rather than short or long durations. Short durations reflect lower pre-migratory experience, whereas very long ones were associated with slower increases in daily activity level which possibly reflects slow behavioural development. In accordance with previous studies, heavier nestlings and those that hatched and migrated earlier had increased survival. Using extensive tracking data, our study exposed new links between early-life attributes and survival, suggesting that early activity profiles in migrating birds can explain variation in first-year survival.
Assuntos
Migração Animal , Aves , Animais , Estações do AnoRESUMO
Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation-induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home-range estimates. As a correction, we tested whether data thinning or autocorrelation-informed home-range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation-informed home-range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.
Efectos del Tamaño Corporal sobre la Estimación de los Requerimientos de Área de Mamíferos Resumen La cuantificación precisa de los requerimientos de área de una especie es un prerrequisito para que la conservación basada en áreas sea efectiva. Esto comúnmente implica la recolección de datos de rastreo de la especie de interés para después realizar análisis de la distribución local. De manera problemática, la autocorrelación en los datos de rastreo puede resultar en una subestimación grave de las necesidades de espacio. Con base en trabajos previos, formulamos una hipótesis en la que supusimos que la magnitud de la subestimación varía con la masa corporal, una relación que podría tener implicaciones serias para la conservación. Para probar esta hipótesis en mamíferos terrestres, estimamos las áreas de distribución local con las ubicaciones en GPS de 757 individuos de 61 especies de mamíferos distribuidas mundialmente con una masa corporal entre 0.4 y 4,000 kg. Después aplicamos una validación cruzada en bloque para cuantificar el sesgo en estimaciones empíricas de la distribución local. Los requerimientos de área de los mamíferos <10 kg fueron subestimados por una media â¼15% y las especies con una masa â¼100 kg fueron subestimadas en â¼50% en promedio. Por lo tanto, encontramos que la estimación del área estaba sujeta al sesgo inducido por la autocorrelación, el cual era peor para las especies de talla grande. En combinación con el hecho de que el riesgo de extinción incrementa conforme aumenta la masa corporal, el escalamiento alométrico del sesgo que observamos sugiere que la mayoría de las especies amenazadas también tienen la probabilidad de ser aquellas especies con las estimaciones de distribución local menos acertadas. Como corrección, probamos si la reducción de datos o la estimación de la distribución local informada por la autocorrelación minimizan el efecto de escalamiento que tiene la autocorrelación sobre las estimaciones de área. La reducción de datos requirió una pérdida de datos del â¼93% para lograr la independencia estadística con un 95% de confianza y por lo tanto no fue una solución viable. Al contrario, la estimación de la distribución local informada por la autocorrelación resultó en estimaciones constantemente precisas sin importar la masa corporal. Cuando relacionamos la masa corporal con el tamaño de la distribución local, detectamos que la corrección de la autocorrelación resultó en un exponente de escalamiento significativamente >1, lo que significa que el escalamiento de la relación cambió sustancialmente en el extremo superior del espectro de la masa corporal.
Assuntos
Conservação dos Recursos Naturais , Mamíferos , Animais , Tamanho Corporal , Espécies em Perigo de Extinção , Comportamento de Retorno ao Território Vital , HumanosRESUMO
BACKGROUND: Organisms are expected to respond to changing environmental conditions through local adaptation, range shift or local extinction. The process of local adaptation can occur by genetic changes or phenotypic plasticity, and becomes especially relevant when dispersal abilities or possibilities are somehow constrained. For genetic changes to occur, mutations are the ultimate source of variation and the mutation rate in terms of a mutator locus can be subject to evolutionary change. Recent findings suggest that the evolution of the mutation rate in a sexual species can advance invasion speed and promote adaptation to novel environmental conditions. Following this idea, this work uses an individual-based model approach to investigate if the mutation rate can also evolve in a sexual species experiencing different conditions of directional climate change, under different scenarios of colored stochastic environmental noise, probability of recombination and of beneficial mutations. The color of the noise mimicked investigating the evolutionary dynamics of the mutation rate in different habitats. RESULTS: The results suggest that the mutation rate in a sexual species experiencing directional climate change scenarios can evolve and reach relatively high values mainly under conditions of complete linkage of the mutator locus and the adaptation locus. In contrast, when they are unlinked, the mutation rate can slightly increase only under scenarios where at least 50% of arising mutations are beneficial and the rate of environmental change is relatively fast. This result is robust under different scenarios of stochastic environmental noise, which supports the observation of no systematic variation in the mutation rate among organisms experiencing different habitats. CONCLUSIONS: Given that 50% beneficial mutations may be an unrealistic assumption, and that recombination is ubiquitous in sexual species, the evolution of an elevated mutation rate in a sexual species experiencing directional climate change might be rather unlikely. Furthermore, when the percentage of beneficial mutations and the population size are small, sexual species (especially multicellular ones) producing few offspring may be expected to react to changing environments not by adaptive genetic change, but mainly through plasticity. Without the ability for a plastic response, such species may become - at least locally - extinct.
Assuntos
Mudança Climática , Taxa de Mutação , Adaptação Fisiológica , Evolução Biológica , Simulação por Computador , Ecossistema , Extinção Biológica , Mutação , Densidade Demográfica , ReproduçãoRESUMO
Savannas are mixed tree-grass ecosystems whose dynamics are predominantly regulated by resource competition and the temporal variability in climatic and environmental factors such as rainfall and fire. Hence, increasing inter-annual rainfall variability due to climate change could have a significant impact on savannas. To investigate this, we used an ecohydrological model of stochastic differential equations and simulated African savanna dynamics along a gradient of mean annual rainfall (520-780 mm/year) for a range of inter-annual rainfall variabilities. Our simulations produced alternative states of grassland and savanna across the mean rainfall gradient. Increasing inter-annual variability had a negative effect on the savanna state under dry conditions (520 mm/year), and a positive effect under moister conditions (580-780 mm/year). The former resulted from the net negative effect of dry and wet extremes on trees. In semi-arid conditions (520 mm/year), dry extremes caused a loss of tree cover, which could not be recovered during wet extremes because of strong resource competition and the increased frequency of fires. At high mean rainfall (780 mm/year), increased variability enhanced savanna resilience. Here, resources were no longer limiting and the slow tree dynamics buffered against variability by maintaining a stable population during 'dry' extremes, providing the basis for growth during wet extremes. Simultaneously, high rainfall years had a weak marginal benefit on grass cover due to density-regulation and grazing. Our results suggest that the effects of the slow tree and fast grass dynamics on tree-grass interactions will become a major determinant of the savanna vegetation composition with increasing rainfall variability.
Assuntos
Mudança Climática , Ecossistema , Pradaria , Chuva , África , Algoritmos , Simulação por Computador , Incêndios , Modelos Teóricos , Poaceae/crescimento & desenvolvimento , Dinâmica Populacional , Processos Estocásticos , Fatores de Tempo , Árvores/crescimento & desenvolvimentoRESUMO
Resilience is a major research focus covering a wide range of topics from biodiversity conservation to ecosystem (service) management. Model simulations can assess the resilience of, for example, plant species, measured as the return time to conditions prior to a disturbance. This requires process-based models (PBM) that implement relevant processes such as regeneration and reproduction and thus successfully reproduce transient dynamics after disturbances. Such models are often complex and thus limited to either short-term or small-scale applications, whereas many research questions require species predictions across larger spatial and temporal scales. We suggest a framework to couple a PBM and a statistical species distribution model (SDM), which transfers the results of a resilience analysis by the PBM to SDM predictions. The resulting hybrid model combines the advantages of both approaches: the convenient applicability of SDMs and the relevant process detail of PBMs in abrupt environmental change situations. First, we simulate dynamic responses of species communities to a disturbance event with a PBM. We aggregate the response behavior in two resilience metrics: return time and amplitude of the response peak. These metrics are then used to complement long-term SDM projections with dynamic short-term responses to disturbance. To illustrate our framework, we investigate the effect of abrupt short-term groundwater level and salinity changes on coastal vegetation at the German Baltic Sea. We found two example species to be largely resilient, and, consequently, modifications of SDM predictions consisted mostly of smoothing out peaks in the occurrence probability that were not confirmed by the PBM. Discrepancies between SDM- and PBM-predicted species responses were caused by community dynamics simulated in the PBM and absent from the SDM. Although demonstrated with boosted regression trees (SDM) and an existing individual-based model, IBC-grass (PBM), our flexible framework can easily be applied to other PBM and SDM types, as well as other definitions of short-term disturbances or long-term trends of environmental change. Thus, our framework allows accounting for biological feedbacks in the response to short- and long-term environmental changes as a major advancement in predictive vegetation modeling.
Assuntos
Ecossistema , Modelos Teóricos , Plantas , Alemanha , Movimentos da ÁguaRESUMO
Early arrival at breeding grounds is of prime importance for migrating birds as it is known to enhance breeding success. Adults, males and higher quality individuals typically arrive earlier, and across years, early arrival has been linked to warmer spring temperatures. However, the mechanisms and potential costs of early arrival are not well understood. To deepen the understanding of arrival date differences between individuals and years, we studied them in light of the preceding spring migration behaviour and atmospheric conditions en route. GPS and body acceleration (ACC) data were obtained for 35 adult white storks (Ciconia ciconia) over five years (2012-2016). ACC records were translated to energy expenditure estimates (overall dynamic body acceleration; ODBA) and to behavioural modes, and GPS fixes were coupled with environmental parameters. At the interindividual level (within years), early arrival was attributed primarily to departing earlier for migration and from more northern wintering sites (closer to breeding grounds), rather than to migration speed. In fact, early-departing birds flew slower, experienced weaker thermal uplifts and expended more energy during flight, but still arrived earlier, emphasizing the cost and the significance of early departure. Individuals that wintered further south arrived later at the breeding grounds but did not produce fewer fledglings, presumably due to positive carry-over effects of advantageous wintering conditions (increased precipitation, vegetation productivity and daylight time). Therefore, early arrival increased breeding success only after controlling for wintering latitude. Males arrived slightly ahead of females. Between years, late arrival was linked to colder temperatures en route through two different mechanisms: stronger headwinds causing slower migration and lower thermal uplifts resulting in longer stopovers. This study showed that distinct migratory properties underlie arrival time variation within and between years. It highlighted (a) an overlooked cost of early arrival induced by unfavourable atmospheric conditions during migration, (b) an important fitness trade-off in storks between arrival date and wintering habitat quality and (c) mechanistic explanations for the negative temperature-arrival date correlation in soaring birds. Such understanding of arrival time can facilitate forecasting migrating species responses to climate changes.
Assuntos
Migração Animal , Cruzamento , Animais , Aves , Mudança Climática , Feminino , Masculino , Estações do AnoRESUMO
Arctic and alpine treelines worldwide differ in their reactions to climate change. A northward advance of or densification within the treeline ecotone will likely influence climate-vegetation feedback mechanisms. In our study, which was conducted in the Taimyr Depression in the North Siberian Lowlands, w present a combined field- and model-based approach helping us to better understand the population processes involved in the responses of the whole treeline ecotone, spanning from closed forest to single-tree tundra, to climate warming. Using information on stand structure, tree age, and seed quality and quantity from seven sites, we investigate effects of intra-specific competition and seed availability on the specific impact of recent climate warming on larch stands. Field data show that tree density is highest in the forest-tundra, and average tree size decreases from closed forest to single-tree tundra. Age-structure analyses indicate that the trees in the closed forest and forest-tundra have been present for at least ~240 yr. At all sites except the most southerly ones, past establishment is positively correlated with regional temperature increase. In the single-tree tundra, however, a change in growth form from krummholz to erect trees, beginning ~130 yr ago, rather than establishment date has been recorded. Seed mass decreases from south to north, while seed quantity increases. Simulations with LAVESI (Larix Vegetation Simulator) further suggest that relative density changes strongly in response to a warming signal in the forest-tundra while intra-specific competition limits densification in the closed forest and seed limitation hinders densification in the single-tree tundra. We find striking differences in strength and timing of responses to recent climate warming. While forest-tundra stands recently densified, recruitment is almost non-existent at the southern and northern end of the ecotone due to autecological processes. Palaeo-treelines may therefore be inappropriate to infer past temperature changes at a fine scale. Moreover, a lagged treeline response to past warming will, via feedback mechanisms, influence climate change in the future.
Assuntos
Mudança Climática , Larix/fisiologia , Regiões Árticas , Sibéria , Temperatura , ÁrvoresRESUMO
Migration conveys an immense challenge, especially for juvenile birds coping with enduring and risky journeys shortly after fledging. Accordingly, juveniles exhibit considerably lower survival rates compared to adults, particularly during migration. Juvenile white storks (Ciconia ciconia), which are known to rely on adults during their first fall migration presumably for navigational purposes, also display much lower annual survival than adults. Using detailed GPS and body acceleration data, we examined the patterns and potential causes of age-related differences in fall migration properties of white storks by comparing first-year juveniles and adults. We compared juvenile and adult parameters of movement, behaviour and energy expenditure (estimated from overall dynamic body acceleration) and placed this in the context of the juveniles' lower survival rate. Juveniles used flapping flight vs. soaring flight 23% more than adults and were estimated to expend 14% more energy during flight. Juveniles did not compensate for their higher flight costs by increased refuelling or resting during migration. When juveniles and adults migrated together in the same flock, the juvenile flew mostly behind the adult and was left behind when they separated. Juveniles showed greater improvement in flight efficiency throughout migration compared to adults which appears crucial because juveniles exhibiting higher flight costs suffered increased mortality. Our findings demonstrate the conflict between the juveniles' inferior flight skills and their urge to keep up with mixed adult-juvenile flocks. We suggest that increased flight costs are an important proximate cause of juvenile mortality in white storks and likely in other soaring migrants and that natural selection is operating on juvenile variation in flight efficiency.
Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Voo Animal/fisiologia , Mortalidade , Fatores Etários , Animais , Comportamento Animal , Metabolismo Energético , Tecnologia de Sensoriamento Remoto , Comportamento SocialRESUMO
Climate change, with warming and drying weather conditions, is reducing the growth, seed production, and survival of fire-adapted plants in fire-prone regions such as Mediterranean-type ecosystems. These effects of climate change on local plant demographics have recently been shown to reduce the persistence time of local populations of the fire-killed shrub Banksia hookeriana dramatically. In principle, extinctions of local populations may be partly compensated by recolonization events through long-distance dispersal mechanisms of seeds, such as post-fire wind and bird-mediated dispersal, facilitating persistence in spatially structured metapopulations. However, to what degree and under which assumptions metapopulation dynamics might compensate for the drastically increased local extinction risk remains to be explored. Given the long timespans involved and the complexity of interwoven local and regional processes, mechanistic, process-based models are one of the most suitable approaches to systematically explore the potential role of metapopulation dynamics and its underlying ecological assumptions for fire-prone ecosystems. Here we extend a recent mechanistic, process-based, spatially implicit population model for the well-studied fire-killed and serotinous shrub species B. hookeriana to a spatially explicit metapopulation model. We systematically tested the effects of different ecological processes and assumptions on metapopulation dynamics under past (1988-2002) and current (2003-2017) climatic conditions, including (i) effects of different spatio-temporal fires, (ii) effects of (likely) reduced intraspecific plant competition under current conditions and (iii) effects of variation in plant performance among and within patches. In general, metapopulation dynamics had the potential to increase the overall regional persistence of B. hookeriana. However, increased population persistence only occurred under specific optimistic assumptions. In both climate scenarios, the highest persistence occurred with larger fires and intermediate to long inter-fire intervals. The assumption of lower intraspecific plant competition caused by lower densities under current conditions alone was not sufficient to increase persistence significantly. To achieve long-term persistence (defined as >400 years) it was necessary to additionally consider empirically observed variation in plant performance among and within patches, that is, improved habitat quality in some large habitat patches (≥7) that could function as source patches and a higher survival rate and seed production for a subset of plants, specifically the top 25% of flower producers based on current climate conditions monitoring data. Our model results demonstrate that the impacts of ongoing climate change on plant demographics are so severe that even under optimistic assumptions, the existing metapopulation dynamics shift to an unstable source-sink dynamic state. Based on our findings, we recommend increased research efforts to understand the consequences of intraspecific trait variation on plant demographics, emphasizing the variation of individual traits both among and within populations. From a conservation perspective, we encourage fire and land managers to revise their prescribed fire plans, which are typically short interval, small fires, as they conflict with the ecologically appropriate spatio-temporal fire regime for B. hookeriana, and likely as well for many other fire-killed species.
RESUMO
Established ecological theory has focused on unitary organisms, and thus its concepts have matured into a form that often hinders rather than facilitates the ecological study of modular organisms. Here, we use the example of filamentous fungi to develop concepts that enable integration of non-unitary (modular) organisms into the established community ecology theory, with particular focus on its spatial aspects. In doing so, we provide a link between fungal community ecology and modern coexistence theory (MCT). We first show how community processes and predictions made by MCT can be used to define meaningful scales in fungal ecology. This leads to the novel concept of the unit of community interactions (UCI), a promising conceptual tool for applying MCT to communities of modular organisms with indeterminate clonal growth and hierarchical individuality. We outline plausible coexistence mechanisms structuring fungal communities, and show at what spatial scales and in what habitats they are most likely to act. We end by describing challenges and opportunities for empirical and theoretical research in fungal competitive coexistence.
RESUMO
Wildlife tagging provides critical insights into animal movement ecology, physiology, and behavior amid global ecosystem changes. However, the stress induced by capture, handling, and tagging can impact post-release locomotion and activity and, consequently, the interpretation of study results. Here, we analyze post-tagging effects on 1585 individuals of 42 terrestrial mammal species using collar-collected GPS and accelerometer data. Species-specific displacements and overall dynamic body acceleration, as a proxy for activity, were assessed over 20 days post-release to quantify disturbance intensity, recovery duration, and speed. Differences were evaluated, considering species-specific traits and the human footprint of the study region. Over 70% of the analyzed species exhibited significant behavioral changes following collaring events. Herbivores traveled farther with variable activity reactions, while omnivores and carnivores were initially less active and mobile. Recovery duration proved brief, with alterations diminishing within 4-7 tracking days for most species. Herbivores, particularly males, showed quicker displacement recovery (4 days) but slower activity recovery (7 days). Individuals in high human footprint areas displayed faster recovery, indicating adaptation to human disturbance. Our findings emphasize the necessity of extending tracking periods beyond 1 week and particular caution in remote study areas or herbivore-focused research, specifically in smaller mammals.
Assuntos
Ecossistema , Mamíferos , Animais , Humanos , Mamíferos/fisiologia , Masculino , Feminino , Locomoção/fisiologia , Herbivoria/fisiologia , Animais Selvagens/fisiologia , Comportamento Animal/fisiologia , Especificidade da EspécieRESUMO
Disturbances' role in shaping communities is well documented but highly disputed. We suggest replacing the overused two-trait trade-off approach with a functional group scheme, constructed from combinations of four key traits that represent four classes of species' responses to disturbances. Using model results and field observations from sites affected by two highly different disturbances, we demonstrated that popular dichotomous trade-offs are not sufficient to explain community dynamics, even if some emerge under certain conditions. Without disturbances, competition was only sufficient to predict species survival but not relative success, which required some escape mechanism (e.g., long-term dormancy). With highly predictable and large-scale disturbances, successful species showed a combination of high individual tolerance to disturbance and, more surprisingly, high competitive ability. When disturbances were less predictable, high individual tolerance and long-term seed dormancy were favored, due to higher environmental uncertainty. Our study demonstrates that theories relying on a small number of predefined trade-offs among traits (e.g., competition-colonization trade-off) may lead to unrealistic results. We suggest that the understanding of disturbance-community relationships can be significantly improved by employing sets of relevant trait assemblies instead of the currently common approach in which trade-offs are assumed in advance.
Assuntos
Ecossistema , Inundações , Modelos Biológicos , Toupeiras/fisiologia , Desenvolvimento Vegetal/fisiologia , Animais , Comportamento Competitivo/fisiologia , Simulação por Computador , Alemanha , Sementes/citologia , Especificidade da EspécieRESUMO
Progressive habitat fragmentation threatens plant species with narrow habitat requirements. While local environmental conditions define population growth rates and recruitment success at the patch level, dispersal is critical for population viability at the landscape scale. Identifying the dynamics of plant meta-populations is often confounded by the uncertainty about soil-stored population compartments. We combined a landscape-scale assessment of an amphibious plant's population structure with measurements of dispersal complexity in time to track dispersal and putative shifts in functional connectivity. Using 13 microsatellite markers, we analyzed the genetic structure of extant Oenanthe aquatica populations and their soil seed banks in a kettle hole system to uncover hidden connectivity among populations in time and space. Considerable spatial genetic structure and isolation-by-distance suggest limited gene flow between sites. Spatial isolation and patch size showed minor effects on genetic diversity. Genetic similarity found among extant populations and their seed banks suggests increased local recruitment, despite some evidence of migration and recent colonization. Results indicate stepping-stone dispersal across adjacent populations. Among permanent and ephemeral demes the resulting meta-population demography could be determined by source-sink dynamics. Overall, these spatiotemporal connectivity patterns support mainland-island dynamics in our system, highlighting the importance of persistent seed banks as enduring sources of genetic diversity.
Assuntos
Fluxo Gênico , Banco de Sementes , Repetições de Microssatélites/genética , Dinâmica Populacional , SoloRESUMO
Assessing and predicting the persistence of populations is essential for the conservation and control of species. Here, we argue that local mechanisms require a better conceptual synthesis to facilitate a more holistic consideration along with regional mechanisms known from metapopulation theory. We summarise the evidence for local buffer mechanisms along with their capacities and emphasise the need to include multiple buffer mechanisms in studies of population persistence. We propose an accessible framework for local buffer mechanisms that distinguishes between damping (reducing fluctuations in population size) and repelling (reducing population declines) mechanisms. We highlight opportunities for empirical and modelling studies to investigate the interactions and capacities of buffer mechanisms to facilitate better ecological understanding in times of ecological upheaval.
RESUMO
Wild bee species are important pollinators in agricultural landscapes. However, population decline was reported over the last decades and is still ongoing. While agricultural intensification is a major driver of the rapid loss of pollinating species, transition zones between arable fields and forest or grassland patches, i.e., agricultural buffer zones, are frequently mentioned as suitable mitigation measures to support wild bee populations and other pollinator species. Despite the reported general positive effect, it remains unclear which amount of buffer zones is needed to ensure a sustainable and permanent impact for enhancing bee diversity and abundance. To address this question at a pollinator community level, we implemented a process-based, spatially explicit simulation model of functional bee diversity dynamics in an agricultural landscape. More specifically, we introduced a variable amount of agricultural buffer zones (ABZs) at the transition of arable to grassland, or arable to forest patches to analyze the impact on bee functional diversity and functional richness. We focused our study on solitary bees in a typical agricultural area in the Northeast of Germany. Our results showed positive effects with at least 25% of virtually implemented agricultural buffer zones. However, higher amounts of ABZs of at least 75% should be considered to ensure a sufficient increase in Shannon diversity and decrease in quasi-extinction risks. These high amounts of ABZs represent effective conservation measures to safeguard the stability of pollination services provided by solitary bee species. As the model structure can be easily adapted to other mobile species in agricultural landscapes, our community approach offers the chance to compare the effectiveness of conservation measures also for other pollinator communities in future.