Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Immunity ; 57(8): 1769-1779.e4, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-38901428

RESUMO

Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season. Baseline AAb seroprevalence increased with age and asymptomatic Plasmodium falciparum infection. We found that AAbs purified from the plasma of protected individuals inhibit the growth of blood-stage parasites and bind P. falciparum proteins that mediate parasite invasion. Protected individuals had higher plasma immunoglobulin G (IgG) reactivity against 33 of the 123 antigens assessed in an autoantigen microarray. This study provides evidence in support of the hypothesis that a propensity toward autoimmunity offers a survival advantage against malaria.


Assuntos
Autoanticorpos , Imunoglobulina G , Malária Falciparum , Plasmodium falciparum , Humanos , Plasmodium falciparum/imunologia , Autoanticorpos/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Criança , Pré-Escolar , Adulto , Imunoglobulina G/imunologia , Imunoglobulina G/sangue , Feminino , Mali , Masculino , Adolescente , Anticorpos Antiprotozoários/imunologia , Estudos Longitudinais , Lactente , Antígenos de Protozoários/imunologia , Adulto Jovem , Autoantígenos/imunologia , Estudos Soroepidemiológicos , Pessoa de Meia-Idade
2.
Nat Immunol ; 21(12): 1506-1516, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33028979

RESUMO

A wide spectrum of clinical manifestations has become a hallmark of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) COVID-19 pandemic, although the immunological underpinnings of diverse disease outcomes remain to be defined. We performed detailed characterization of B cell responses through high-dimensional flow cytometry to reveal substantial heterogeneity in both effector and immature populations. More notably, critically ill patients displayed hallmarks of extrafollicular B cell activation and shared B cell repertoire features previously described in autoimmune settings. Extrafollicular activation correlated strongly with large antibody-secreting cell expansion and early production of high concentrations of SARS-CoV-2-specific neutralizing antibodies. Yet, these patients had severe disease with elevated inflammatory biomarkers, multiorgan failure and death. Overall, these findings strongly suggest a pathogenic role for immune activation in subsets of patients with COVID-19. Our study provides further evidence that targeted immunomodulatory therapy may be beneficial in specific patient subpopulations and can be informed by careful immune profiling.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , SARS-CoV-2/imunologia , Humanos , Imunofenotipagem
3.
Nat Immunol ; 20(8): 1071-1082, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31263277

RESUMO

Systemic lupus erythematosus (SLE) is characterized by the expansion of extrafollicular pathogenic B cells derived from newly activated naive cells. Although these cells express distinct markers, their epigenetic architecture and how it contributes to SLE remain poorly understood. To address this, we determined the DNA methylomes, chromatin accessibility profiles and transcriptomes from five human B cell subsets, including a newly defined effector B cell subset, from subjects with SLE and healthy controls. Our data define a differentiation hierarchy for the subsets and elucidate the epigenetic and transcriptional differences between effector and memory B cells. Importantly, an SLE molecular signature was already established in resting naive cells and was dominated by enrichment of accessible chromatin in motifs for AP-1 and EGR transcription factors. Together, these factors acted in synergy with T-BET to shape the epigenome of expanded SLE effector B cell subsets. Thus, our data define the molecular foundation of pathogenic B cell dysfunction in SLE.


Assuntos
Subpopulações de Linfócitos B/patologia , Metilação de DNA/genética , Epigênese Genética/genética , Lúpus Eritematoso Sistêmico/genética , Subpopulações de Linfócitos B/imunologia , Montagem e Desmontagem da Cromatina/fisiologia , Fatores de Transcrição de Resposta de Crescimento Precoce/genética , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Fator de Transcrição AP-1/genética , Transcriptoma/genética
4.
Nature ; 611(7934): 139-147, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36044993

RESUMO

Severe SARS-CoV-2 infection1 has been associated with highly inflammatory immune activation since the earliest days of the COVID-19 pandemic2-5. More recently, these responses have been associated with the emergence of self-reactive antibodies with pathologic potential6-10, although their origins and resolution have remained unclear11. Previously, we and others have identified extrafollicular B cell activation, a pathway associated with the formation of new autoreactive antibodies in chronic autoimmunity12,13, as a dominant feature of severe and critical COVID-19 (refs. 14-18). Here, using single-cell B cell repertoire analysis of patients with mild and severe disease, we identify the expansion of a naive-derived, low-mutation IgG1 population of antibody-secreting cells (ASCs) reflecting features of low selective pressure. These features correlate with progressive, broad, clinically relevant autoreactivity, particularly directed against nuclear antigens and carbamylated proteins, emerging 10-15 days after the onset of symptoms. Detailed analysis of the low-selection compartment shows a high frequency of clonotypes specific for both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against the glomerular basement membrane. We further identify the contraction of this pathway on recovery, re-establishment of tolerance standards and concomitant loss of acute-derived ASCs irrespective of antigen specificity. However, serological autoreactivity persists in a subset of patients with postacute sequelae, raising important questions as to the contribution of emerging autoreactivity to continuing symptomology on recovery. In summary, this study demonstrates the origins, breadth and resolution of autoreactivity in severe COVID-19, with implications for early intervention and the treatment of patients with post-COVID sequelae.


Assuntos
Autoanticorpos , Linfócitos B , COVID-19 , Humanos , Autoanticorpos/imunologia , Linfócitos B/imunologia , Linfócitos B/patologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/fisiopatologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Imunoglobulina G/imunologia , Análise de Célula Única , Autoantígenos/imunologia , Membrana Basal/imunologia , Síndrome de COVID-19 Pós-Aguda
5.
Nat Immunol ; 16(7): 755-65, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26006014

RESUMO

Acute systemic lupus erythematosus (SLE) courses with surges of antibody-secreting cells (ASCs) whose origin, diversity and contribution to serum autoantibodies remain unknown. Here, deep sequencing, proteomic profiling of autoantibodies and single-cell analysis demonstrated highly diversified ASCs punctuated by clones expressing the variable heavy-chain region VH4-34 that produced dominant serum autoantibodies. A fraction of ASC clones contained autoantibodies without mutation, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment was derived from a distinct subset of newly activated naive cells of considerable clonality that persisted in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation, with prolonged recruitment of recently activated naive B cells. Our findings shed light on the pathogenesis of SLE, help explain the benefit of agents that target B cells and should facilitate the design of future therapies.


Assuntos
Diversidade de Anticorpos/imunologia , Células Produtoras de Anticorpos/imunologia , Autoanticorpos/imunologia , Proliferação de Células , Lúpus Eritematoso Sistêmico/imunologia , Doença Aguda , Sequência de Aminoácidos , Diversidade de Anticorpos/genética , Células Produtoras de Anticorpos/metabolismo , Autoanticorpos/genética , Autoanticorpos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Sequência de Bases , Células Clonais/imunologia , Células Clonais/metabolismo , Citometria de Fluxo , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Região Variável de Imunoglobulina/metabolismo , Vacinas contra Influenza/imunologia , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Dados de Sequência Molecular , Proteoma/análise , Proteoma/imunologia , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Análise de Célula Única/métodos , Espectrometria de Massas em Tandem , Toxoide Tetânico/imunologia
6.
Immunity ; 49(4): 725-739.e6, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30314758

RESUMO

Systemic Lupus Erythematosus (SLE) is characterized by B cells lacking IgD and CD27 (double negative; DN). We show that DN cell expansions reflected a subset of CXCR5- CD11c+ cells (DN2) representing pre-plasma cells (PC). DN2 cells predominated in African-American patients with active disease and nephritis, anti-Smith and anti-RNA autoantibodies. They expressed a T-bet transcriptional network; increased Toll-like receptor-7 (TLR7); lacked the negative TLR regulator TRAF5; and were hyper-responsive to TLR7. DN2 cells shared with activated naive cells (aNAV), phenotypic and functional features, and similar transcriptomes. Their PC differentiation and autoantibody production was driven by TLR7 in an interleukin-21 (IL-21)-mediated fashion. An in vivo developmental link between aNAV, DN2 cells, and PC was demonstrated by clonal sharing. This study defines a distinct differentiation fate of autoreactive naive B cells into PC precursors with hyper-responsiveness to innate stimuli, as well as establishes prominence of extra-follicular B cell activation in SLE, and identifies therapeutic targets.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Receptor 7 Toll-Like/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Subpopulações de Linfócitos B/metabolismo , Linfócitos B/metabolismo , Feminino , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/imunologia , Humanos , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Pessoa de Meia-Idade , Plasmócitos/imunologia , Plasmócitos/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia , Adulto Jovem
8.
Immunol Rev ; 288(1): 136-148, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30874345

RESUMO

Chronic autoimmune diseases, and in particular Systemic Lupus Erythematosus (SLE), are endowed with a long-standing autoreactive B-cell compartment that is presumed to reactivate periodically leading to the generation of new bursts of pathogenic antibody-secreting cells (ASC). Moreover, pathogenic autoantibodies are typically characterized by a high load of somatic hypermutation and in some cases are highly stable even in the context of prolonged B-cell depletion. Long-lived, highly mutated antibodies are typically generated through T-cell-dependent germinal center (GC) reactions. Accordingly, an important role for GC reactions in the generation of pathogenic autoreactivity has been postulated in SLE. Nevertheless, pathogenic autoantibodies and autoimmune disease can be generated through B-cell extrafollicular (EF) reactions in multiple mouse models and human SLE flares are characterized by the expansion of naive-derived activated effector B cells of extrafollicular phenotype. In this review, we will discuss the properties of the EF B-cell pathway, its relationship to other effector B-cell populations, its role in autoimmune diseases, and its contribution to human SLE. Furthermore, we discuss the relationship of EF B cells with Age-Associated B cells (ABCs), a TLR-7-driven B-cell population that mediates murine autoimmune and antiviral responses.


Assuntos
Autoanticorpos/metabolismo , Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Linfócitos T/imunologia , Animais , Autoantígenos/imunologia , Centro Germinativo/imunologia , Humanos , Ativação Linfocitária , Camundongos , Receptor 7 Toll-Like/metabolismo
9.
Immunol Rev ; 292(1): 76-89, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31755562

RESUMO

The maintenance of immunological tolerance of B lymphocytes is a complex and critical process that must be implemented as to avoid the detrimental development of autoreactivity and possible autoimmunity. Murine models have been invaluable to elucidate many of the key components in B-cell tolerance; however, translation to human homeostatic and pathogenic immune states can be difficult to assess. Functional autoreactive, flow cytometric, and single-cell cloning assays have proven to be critical in deciphering breaks in B-cell tolerance within autoimmunity; however, newer approaches to assess human B-cell tolerance may prove to be vital in the further exploration of underlying tolerance defects. In this review, we supply a comprehensive overview of human immune tolerance checkpoints with associated mechanisms of enforcement, and highlight current and future methodologies which are likely to benefit future studies into the mechanisms that become defective in human autoimmune conditions.


Assuntos
Autoantígenos/imunologia , Doenças Autoimunes/imunologia , Autoimunidade/imunologia , Linfócitos B/imunologia , Tolerância Imunológica/imunologia , Animais , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/imunologia , Ativação Linfocitária/imunologia
10.
Ann Rheum Dis ; 80(9): 1190-1200, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34083207

RESUMO

OBJECTIVE: While the contribution of B-cells to SLE is well established, its role in chronic cutaneous lupus erythematosus (CCLE) remains unclear. Here, we compare B-cell and serum auto-antibody profiles between patients with systemic lupus erythematosus (SLE), CCLE, and overlap conditions. METHODS: B-cells were compared by flow cytometry amongst healthy controls, CCLE without systemic lupus (CCLE+/SLE-) and SLE patients with (SLE+/CCLE+) or without CCLE (SLE+/CCLE-). Serum was analyed for autoreactive 9G4+, anti-double-stranded DNA, anti-chromatin and anti-RNA antibodies by ELISA and for anti-RNA binding proteins (RBP) by luciferase immunoprecipitation. RESULTS: Patients with CCLE+/SLE- share B-cell abnormalities with SLE including decreased unswitched memory and increased effector B-cells albeit at a lower level than SLE patients. Similarly, both SLE and CCLE+/SLE- patients have elevated 9G4+ IgG autoantibodies despite lower levels of anti-nucleic acid and anti-RBP antibodies in CCLE+/SLE-. CCLE+/SLE- patients could be stratified into those with SLE-like B-cell profiles and a separate group with normal B-cell profiles. The former group was more serologically active and more likely to have disseminated skin lesions. CONCLUSION: CCLE displays perturbations in B-cell homeostasis and partial B-cell tolerance breakdown. Our study demonstrates that this entity is immunologically heterogeneous and includes a disease segment whose B-cell compartment resembles SLE and is clinically associated with enhanced serological activity and more extensive skin disease. This picture suggests that SLE-like B-cell changes in primary CCLE may help identify patients at risk for subsequent development of SLE. B-cell profiling in CCLE might also indentify candidates who would benefit from B-cell targeted therapies.


Assuntos
Subpopulações de Linfócitos B/imunologia , Linfócitos B/imunologia , Lúpus Eritematoso Cutâneo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Adulto , Anticorpos Antinucleares , Autoanticorpos/imunologia , Cromatina/imunologia , Doença Crônica , DNA/imunologia , Feminino , Citometria de Fluxo , Humanos , Memória Imunológica/imunologia , Imunofenotipagem , Lúpus Eritematoso Cutâneo/complicações , Lúpus Eritematoso Sistêmico/complicações , Masculino , Pessoa de Meia-Idade , RNA/imunologia , Proteínas de Ligação a RNA/imunologia
11.
J Immunol ; 197(10): 3841-3849, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798155

RESUMO

Plasmodium falciparum malaria is a deadly infectious disease in which Abs play a critical role in naturally acquired immunity. However, the specificity and nature of Abs elicited in response to malaria are only partially understood. Autoreactivity and polyreactivity are common features of Ab responses in several infections and were suggested to contribute to effective pathogen-specific Ab responses. In this article, we report on the regulation of B cells expressing the inherently autoreactive VH4-34 H chain (identified by the 9G4 mAb) and 9G4+ plasma IgG in adults and children living in a P. falciparum malaria-endemic area in West Africa. The frequency of 9G4+ peripheral blood CD19+ B cells was similar in United States adults and African adults and children; however, more 9G4+ B cells appeared in classical and atypical memory B cell compartments in African children and adults compared with United States adults. The levels of 9G4+ IgG increased following acute febrile malaria but did not increase with age as humoral immunity is acquired or correlate with protection from acute disease. This was the case, even though a portion of 9G4+ B cells acquired phenotypes of atypical and classical memory B cells and 9G4+ IgG contained equivalent numbers of somatic hypermutations compared with all other VHs, a characteristic of secondary Ab repertoire diversification in response to Ag stimulation. Determining the origin and function of 9G4+ B cells and 9G4+ IgG in malaria may contribute to a better understanding of the varied roles of autoreactivity in infectious diseases.


Assuntos
Anticorpos Antiprotozoários/sangue , Autoimunidade , Linfócitos B/imunologia , Imunoglobulina G/sangue , Cadeias Pesadas de Imunoglobulinas/imunologia , Malária Falciparum/imunologia , Adulto , África Ocidental/epidemiologia , Anticorpos Antiprotozoários/imunologia , Linfócitos B/química , Criança , Doenças Endêmicas , Regulação da Expressão Gênica , Humanos , Imunidade Humoral , Imunoglobulina G/imunologia , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Malária/epidemiologia , Malária/imunologia , Malária Falciparum/epidemiologia , Fenótipo , Plasmodium falciparum/imunologia , Estados Unidos/epidemiologia
12.
J Immunol ; 191(10): 4926-39, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24108696

RESUMO

9G4(+) IgG Abs expand in systemic lupus erythematosus (SLE) in a disease-specific fashion and react with different lupus Ags including B cell Ags and apoptotic cells. Their shared use of VH4-34 represents a unique system to understand the molecular basis of lupus autoreactivity. In this study, a large panel of recombinant 9G4(+) mAbs from single naive and memory cells was generated and tested against B cells, apoptotic cells, and other Ags. Mutagenesis eliminated the framework-1 hydrophobic patch (HP) responsible for the 9G4 idiotype. The expression of the HP in unselected VH4-34 cells was assessed by deep sequencing. We found that 9G4 Abs recognize several Ags following two distinct structural patterns. B cell binding is dependent on the HP, whereas anti-nuclear Abs, apoptotic cells, and dsDNA binding are HP independent and correlate with positively charged H chain third CDR. The majority of mutated VH4-34 memory cells retain the HP, thereby suggesting selection by Ags that require this germline structure. Our findings show that the germline-encoded HP is compulsory for the anti-B cell reactivity largely associated with 9G4 Abs in SLE but is not required for reactivity against apoptotic cells, dsDNA, chromatin, anti-nuclear Abs, or cardiolipin. Given that the lupus memory compartment contains a majority of HP(+) VH4-34 cells but decreased B cell reactivity, additional HP-dependent Ags must participate in the selection of this compartment. This study represents the first analysis, to our knowledge, of VH-restricted autoreactive B cells specifically expanded in SLE and provides the foundation to understand the antigenic forces at play in this disease.


Assuntos
Linfócitos B/imunologia , Imunoglobulina G/imunologia , Região Variável de Imunoglobulina/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Anticorpos Antinucleares/imunologia , Apoptose/imunologia , Autoantígenos/imunologia , Cardiolipinas/imunologia , Cromatina/imunologia , DNA/imunologia , Humanos , Idiótipos de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Dados de Sequência Molecular
13.
Arthritis Rheum ; 65(12): 3165-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23983101

RESUMO

OBJECTIVE: To determine the prevalence of anti-apoptotic cell (anti-AC) antibodies with the 9G4 idiotype (9G4+) and the relationship between this and other known 9G4+ specificities and disease activity in patients with systemic lupus erythematosus (SLE). METHODS: Serum samples from 60 SLE patients and 40 healthy donors were incubated with apoptotic Jurkat cells and assayed by flow cytometry for the binding of 9G4+ antibodies. The samples were also tested for 9G4+ reactivity against naive B cells and total IgG and IgM anti-AC antibody reactivity. RESULTS: The 9G4+ antibodies bound late ACs in sera from a majority of the SLE patients (60%) but in sera from only 2 healthy control subjects. Among samples with global IgM or IgG anti-AC antibodies, those with 9G4+ anti-AC antibodies predominated. Patients with high levels of 9G4+ anti-AC antibodies were more likely to have active disease. This was the case even in patients with IgG anti-AC antibodies or anti-double-stranded DNA antibodies. Patients with lupus nephritis were also more likely to have 9G4+ anti-AC antibodies. While 9G4+ reactivity to ACs often coincided with anti-B cell reactivity, some samples had distinct anti-AC or anti-B cell reactivity. CONCLUSION: The 9G4+ antibody represents a major species of anti-AC antibody in SLE serum, and this autoreactivity is associated with disease activity. The anti-AC reactivity of 9G4+ antibodies can be separated from the germline VH4-34-encoded anti-B cell autoreactivity. Our results indicate that ACs are an important antigenic source in SLE that positively selects B cells with intrinsic autoreactivity against other self antigens. This selection of 9G4+ B cells by ACs may represent an important step in disease progression.


Assuntos
Anticorpos Anti-Idiotípicos/sangue , Apoptose/imunologia , Autoanticorpos/sangue , Lúpus Eritematoso Sistêmico/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Lúpus Eritematoso Sistêmico/sangue , Masculino , Pessoa de Meia-Idade , Índice de Gravidade de Doença
14.
Arthritis Rheum ; 65(4): 1022-31, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23280626

RESUMO

OBJECTIVE: To evaluate the requirement for protein kinase Cß (PKCß) in the development of lupus in mice, and to explore the potential of targeting PKCß as a therapeutic strategy in lupus. METHODS: Congenic mice bearing the disease loci Sle1 or Sle1 and Sle3, which represent different stages of severity in the development of lupus, were crossed with PKCß-deficient mice. The effect of PKCß deficiency in lupus development was analyzed. In addition, the effects of the PKCß-specific inhibitor enzastaurin on the survival of B cells from mice with lupus and human 9G4-positive B cells as well as the in vivo effect of enzastaurin treatment on the development of lupus in Sle mice were investigated. RESULTS: In Sle mice, PKCß deficiency abrogated lupus-associated phenotypes, including high autoantibody levels, proteinuria, and histologic features of lupus nephritis. Significant decreases in spleen size and in the peritoneal B-1 cell population, reduced numbers of activated CD4 T cells, and normalized CD4:CD8 ratios were observed. PKCß deficiency induced an anergic B cell phenotype and preferentially inhibited autoreactive plasma cells and autoantibodies in mice with lupus. Inhibition of PKCß enhanced apoptosis of both B cells from Sle mice and human autoreactive B cells (9G4 positive). Treatment of Sle mice with the PKCß-specific inhibitor enzastaurin prevented the development of lupus. CONCLUSION: This study identifies PKCß as a central mediator of lupus pathogenesis, suggesting that PKCß represents a promising therapeutic target for the treatment of systemic lupus erythematosus. Moreover, the results indicate the feasibility of using a PKCß inhibitor for the treatment of lupus.


Assuntos
Linfócitos B/efeitos dos fármacos , Indóis/farmacologia , Lúpus Eritematoso Sistêmico/metabolismo , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linfócitos B/citologia , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Lúpus Eritematoso Sistêmico/genética , Camundongos , Camundongos Congênicos , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Proteína Quinase C beta
15.
Nat Commun ; 15(1): 1899, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429276

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibody types, some of which are produced by long-lived plasma cells (LLPC). Active SLE generates increased circulating antibody-secreting cells (ASC). Here, we examine the phenotypic, molecular, structural, and functional features of ASC in SLE. Relative to post-vaccination ASC in healthy controls, circulating blood ASC from patients with active SLE are enriched with newly generated mature CD19-CD138+ ASC, similar to bone marrow LLPC. ASC from patients with SLE displayed morphological features of premature maturation and a transcriptome epigenetically initiated in SLE B cells. ASC from patients with SLE exhibited elevated protein levels of CXCR4, CXCR3 and CD138, along with molecular programs that promote survival. Furthermore, they demonstrate autocrine production of APRIL and IL-10, which contributed to their prolonged in vitro survival. Our work provides insight into the mechanisms of generation, expansion, maturation and survival of SLE ASC.


Assuntos
Doenças Autoimunes , Lúpus Eritematoso Sistêmico , Humanos , Citocinas , Transcriptoma , Lúpus Eritematoso Sistêmico/genética , Células Produtoras de Anticorpos
16.
Res Sq ; 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37461641

RESUMO

Systemic Lupus Erythematosus (SLE) is an autoimmune disease characterized by multiple autoantibodies, some of which are present in high titers in a sustained, B cell-independent fashion consistent with their generation from long-lived plasma cells (LLPC). Active SLE displays high numbers of circulating antibody-secreting cells (ASC). Understanding the mechanisms of generation and survival of SLE ASC would contribute important insight into disease pathogenesis and novel targeted therapies. We studied the properties of SLE ASC through a systematic analysis of their phenotypic, molecular, structural, and functional features. Our results indicate that in active SLE, relative to healthy post-immunization responses, blood ASC contain a much larger fraction of newly generated mature CD19- CD138+ ASC similar to bone marrow (BM) LLPC. SLE ASC were characterized by morphological and structural features of premature maturation. Additionally, SLE ASC express high levels of CXCR4 and CD138, and molecular programs consistent with increased longevity based on pro-survival and attenuated pro-apoptotic pathways. Notably, SLE ASC demonstrate autocrine production of APRIL and IL-10 and experience prolonged in vitro survival. Combined, our findings indicate that SLE ASC are endowed with enhanced peripheral maturation, survival and BM homing potential suggesting that these features likely underlie BM expansion of autoreactive PC.

17.
Nat Commun ; 14(1): 4201, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452024

RESUMO

While immunologic correlates of COVID-19 have been widely reported, their associations with post-acute sequelae of COVID-19 (PASC) remain less clear. Due to the wide array of PASC presentations, understanding if specific disease features associate with discrete immune processes and therapeutic opportunities is important. Here we profile patients in the recovery phase of COVID-19 via proteomics screening and machine learning to find signatures of ongoing antiviral B cell development, immune-mediated fibrosis, and markers of cell death in PASC patients but not in controls with uncomplicated recovery. Plasma and immune cell profiling further allow the stratification of PASC into inflammatory and non-inflammatory types. Inflammatory PASC, identifiable through a refined set of 12 blood markers, displays evidence of ongoing neutrophil activity, B cell memory alterations, and building autoreactivity more than a year post COVID-19. Our work thus helps refine PASC categorization to aid in both therapeutic targeting and epidemiological investigation of PASC.


Assuntos
COVID-19 , Neutrófilos , Humanos , Síndrome de COVID-19 Pós-Aguda , Inflamação , Antivirais , Progressão da Doença
18.
Front Med (Lausanne) ; 9: 950452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148466

RESUMO

Background: B lymphocytes are dysregulated in Systemic Lupus Erythematosus (SLE) including the expansion of extrafollicular B cells in patients with SLE of African American ancestry, which is associated with disease activity and nephritis. The population of Colombia has a mixture of European, Native American, and African ancestry. It is not known if Colombian patients have the same B cell distributions described previously and if they are associated with disease activity, clinical manifestations, and environmental exposures. Objective: To characterize B cell phenotype in a group of Colombian Systemic Lupus Erythematosus patients with mixed ancestry and determine possible associations with disease activity, clinical manifestations, the DNA methylation status of the IFI44L gene and environmental exposures. Materials and methods: Forty SLE patients and 17 healthy controls were recruited. Cryopreserved peripheral B lymphocytes were analyzed by multiparameter flow cytometry, and the DNA methylation status of the gene IFI44L was evaluated in resting Naive B cells (rNAV). Results: Extrafollicular active Naive (aNAV) and Double Negative type 2, DN2 (CD27- IgD- CD21- CD11c+) B cells were expanded in severe active patients and were associated with nephritis. Patients had hypomethylation of the IFI44L gene in rNAV cells. Regarding environmental exposure, patients occupationally exposed to organic solvents had increased memory CD27+ cells (SWM). Conclusion: aNAV and DN2 extrafollicular cells showed significant clinical associations in Colombian SLE patients, suggesting a relevant role in the disease's pathophysiology. Hypomethylation of the IFI44L gene in resting Naive B cells suggests that epigenetic changes are established at exceedingly early stages of B cell ontogeny. Also, an alteration in SWM memory cells was observed for the first time in patients exposed to organic solvents. This opens different clinical and basic research possibilities to corroborate these findings and deepen the knowledge of the relationship between environmental exposure and SLE.

19.
medRxiv ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33106819

RESUMO

An emerging feature of COVID-19 is the identification of autoreactivity in patients with severe disease that may contribute to disease pathology, however the origin and resolution of these responses remain unclear. Previously, we identified strong extrafollicular B cell activation as a shared immune response feature between both severe COVID-19 and patients with advanced rheumatic disease. In autoimmune settings, this pathway is associated with relaxed peripheral tolerance in the antibody secreting cell compartment and the generation of de novo autoreactive responses. Investigating these responses in COVID-19, we performed single-cell repertoire analysis on 7 patients with severe disease. In these patients, we identify the expansion of a low-mutation IgG1 fraction of the antibody secreting cell compartment that are not memory derived, display low levels of selective pressure, and are enriched for autoreactivity-prone IGHV4-34 expression. Within this compartment, we identify B cell lineages that display specificity to both SARS-CoV-2 and autoantigens, including pathogenic autoantibodies against glomerular basement membrane, and describe progressive, broad, clinically relevant autoreactivity within these patients correlated with disease severity. Importantly, we identify anti-carbamylated protein responses as a common hallmark and candidate biomarker of broken peripheral tolerance in severe COVID-19. Finally, we identify the contraction of this pathway upon recovery, and re-establishment of tolerance standards coupled with a concomitant loss of acute-derived ASCs irrespective of antigen specificity. In total, this study reveals the origins, breadth, and resolution of acute-phase autoreactivity in severe COVID-19, with significant implications in both early interventions and potential treatment of patients with post-COVID sequelae.

20.
J Immunol ; 181(5): 3039-48, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18713974

RESUMO

Immunodominance refers to the restricted peptide specificity of T cells that are detectable after an adaptive immune response. For CD4 T cells, many of the mechanisms used to explain this selectivity suggest that events related to Ag processing play a major role in determining a peptide's ability to recruit CD4 T cells. Implicit in these models is the prediction that the molecular context in which an antigenic peptide is contained will impact significantly on its immunodominance. In this study, we present evidence that the selectivity of CD4 T cell responses to peptides contained within protein Ags is not detectably influenced by the location of the peptide in a given protein or the primary sequence of the protein that bears the test peptide. We have used molecular approaches to change the location of peptides within complex protein Ags and to change the flanking sequences that border the peptide epitope to now include a protease site, and find that immunodominance or crypticity of a peptide observed in its native protein context is preserved. Collectively, these results suggest immunodominance of peptides contained in complex Ags is due to an intrinsic factor of the peptide, based upon the affinity of that peptide for MHC class II molecules. These findings are discussed with regard to implications for vaccine design.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Isoantígenos/imunologia , Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Vacinas , Animais , Epitopos , Antígenos de Histocompatibilidade Classe II , Camundongos , Camundongos Endogâmicos BALB C , Fragmentos de Peptídeos/imunologia , Proteínas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA