Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 57(6): 978-990, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29303562

RESUMO

Photoinduced charge-transfer dynamics and the influence of cluster size on the dynamics were investigated using five iron-sulfur clusters: the 1Fe-4S cluster in Pyrococcus furiosus rubredoxin, the 2Fe-2S cluster in Pseudomonas putida putidaredoxin, the 4Fe-4S cluster in nitrogenase iron protein, and the 8Fe-7S P-cluster and the 7Fe-9S-1Mo FeMo cofactor in nitrogenase MoFe protein. Laser excitation promotes the iron-sulfur clusters to excited electronic states that relax to lower states. The electronic relaxation lifetimes of the 1Fe-4S, 8Fe-7S, and 7Fe-9S-1Mo clusters are on the picosecond time scale, although the dynamics of the MoFe protein is a mixture of the dynamics of the latter two clusters. The lifetimes of the 2Fe-2S and 4Fe-4S clusters, however, extend to several nanoseconds. A competition between reorganization energies and the density of electronic states (thus electronic coupling between states) mediates the charge-transfer lifetimes, with the 2Fe-2S cluster of Pdx and the 4Fe-4S cluster of Fe protein lying at the optimum leading to them having significantly longer lifetimes. Their long lifetimes make them the optimal candidates for long-range electron transfer and as external photosensitizers for other photoactivated chemical reactions like solar hydrogen production. Potential electron-transfer and hole-transfer pathways that possibly facilitate these charge transfers are proposed.


Assuntos
Bactérias/química , Proteínas de Bactérias/química , Proteínas Ferro-Enxofre/química , Azotobacter vinelandii/química , Domínio Catalítico , Transporte de Elétrons , Ferredoxinas/química , Modelos Moleculares , Oxirredução , Oxirredutases/química , Conformação Proteica , Pseudomonas putida/química , Pyrococcus furiosus/química , Rubredoxinas/química
2.
Inorg Chem ; 55(14): 6866-72, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27387959

RESUMO

We used a novel experimental setup to conduct the first synchrotron-based (61)Ni Mössbauer spectroscopy measurements in the energy domain on Ni coordination complexes and metalloproteins. A representative set of samples was chosen to demonstrate the potential of this approach. (61)NiCr2O4 was examined as a case with strong Zeeman splittings. Simulations of the spectra yielded an internal magnetic field of 44.6 T, consistent with previous work by the traditional (61)Ni Mössbauer approach with a radioactive source. A linear Ni amido complex, (61)Ni{N(SiMe3)Dipp}2, where Dipp = C6H3-2,6-(i)Pr2, was chosen as a sample with an "extreme" geometry and large quadrupole splitting. Finally, to demonstrate the feasibility of metalloprotein studies using synchrotron-based (61)Ni Mössbauer spectroscopy, we examined the spectra of (61)Ni-substituted rubredoxin in reduced and oxidized forms, along with [Et4N]2[(61)Ni(SPh)4] as a model compound. For each of the above samples, a reasonable spectrum could be obtained in ∼1 d. Given that there is still room for considerable improvement in experimental sensitivity, synchrotron-based (61)Ni Mössbauer spectroscopy appears to be a promising alternative to measurements with radioactive sources.


Assuntos
Níquel/química , Espectroscopia de Mossbauer/métodos , Síncrotrons , Magnetismo
3.
Nature ; 466(7307): 779-82, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20639861

RESUMO

Metal ion cofactors afford proteins virtually unlimited catalytic potential, enable electron transfer reactions and have a great impact on protein stability. Consequently, metalloproteins have key roles in most biological processes, including respiration (iron and copper), photosynthesis (manganese) and drug metabolism (iron). Yet, predicting from genome sequence the numbers and types of metal an organism assimilates from its environment or uses in its metalloproteome is currently impossible because metal coordination sites are diverse and poorly recognized. We present here a robust, metal-based approach to determine all metals an organism assimilates and identify its metalloproteins on a genome-wide scale. This shifts the focus from classical protein-based purification to metal-based identification and purification by liquid chromatography, high-throughput tandem mass spectrometry (HT-MS/MS) and inductively coupled plasma mass spectrometry (ICP-MS) to characterize cytoplasmic metalloproteins from an exemplary microorganism (Pyrococcus furiosus). Of 343 metal peaks in chromatography fractions, 158 did not match any predicted metalloprotein. Unassigned peaks included metals known to be used (cobalt, iron, nickel, tungsten and zinc; 83 peaks) plus metals the organism was not thought to assimilate (lead, manganese, molybdenum, uranium and vanadium; 75 peaks). Purification of eight of 158 unexpected metal peaks yielded four novel nickel- and molybdenum-containing proteins, whereas four purified proteins contained sub-stoichiometric amounts of misincorporated lead and uranium. Analyses of two additional microorganisms (Escherichia coli and Sulfolobus solfataricus) revealed species-specific assimilation of yet more unexpected metals. Metalloproteomes are therefore much more extensive and diverse than previously recognized, and promise to provide key insights for cell biology, microbial growth and toxicity mechanisms.


Assuntos
Proteínas de Bactérias/análise , Metaloproteínas/análise , Metaloproteínas/química , Metais/análise , Proteoma/análise , Pyrococcus furiosus/química , Proteínas de Bactérias/química , Cromatografia Líquida , Escherichia coli/química , Metais/química , Metais/metabolismo , Proteoma/química , Proteômica , Pyrococcus furiosus/metabolismo , Sulfolobus solfataricus/química , Espectrometria de Massas em Tandem
4.
Sci Rep ; 14(1): 12197, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806591

RESUMO

Extremophile organisms are known that can metabolize at temperatures down to - 25 °C (psychrophiles) and up to 122 °C (hyperthermophiles). Understanding viability under extreme conditions is relevant for human health, biotechnological applications, and our search for life elsewhere in the universe. Information about the stability and dynamics of proteins under environmental extremes is an important factor in this regard. Here we compare the dynamics of small Fe-S proteins - rubredoxins - from psychrophilic and hyperthermophilic microorganisms, using three different nuclear techniques as well as molecular dynamics calculations to quantify motion at the Fe site. The theory of 'corresponding states' posits that homologous proteins from different extremophiles have comparable flexibilities at the optimum growth temperatures of their respective organisms. Although 'corresponding states' would predict greater flexibility for rubredoxins that operate at low temperatures, we find that from 4 to 300 K, the dynamics of the Fe sites in these homologous proteins are essentially equivalent.


Assuntos
Extremófilos , Ferro , Rubredoxinas , Ferro/metabolismo , Ferro/química , Extremófilos/metabolismo , Rubredoxinas/química , Rubredoxinas/metabolismo , Simulação de Dinâmica Molecular , Temperatura
5.
J Biol Chem ; 287(5): 3257-64, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22157005

RESUMO

The cytoplasmic hydrogenase (SHI) of the hyperthermophilic archaeon Pyrococcus furiosus is an NADP(H)-dependent heterotetrameric enzyme that contains a nickel-iron catalytic site, flavin, and six iron-sulfur clusters. It has potential utility in a range of bioenergy systems in vitro, but a major obstacle in its use is generating sufficient amounts. We have engineered P. furiosus to overproduce SHI utilizing a recently developed genetic system. In the overexpression (OE-SHI) strain, transcription of the four-gene SHI operon was under the control of a strong constitutive promoter, and a Strep-tag II was added to the N terminus of one subunit. OE-SHI and wild-type P. furiosus strains had similar rates of growth and H(2) production on maltose. Strain OE-SHI had a 20-fold higher transcription of the polycistronic hydrogenase mRNA encoding SHI, and the specific activity of the cytoplasmic hydrogenase was ∼10-fold higher when compared with the wild-type strain, although the expression levels of genes encoding processing and maturation of SHI were the same in both strains. Overexpressed SHI was purified by a single affinity chromatography step using the Strep-tag II, and it and the native form had comparable activities and physical properties. Based on protein yield per gram of cells (wet weight), the OE-SHI strain yields a 100-fold higher amount of hydrogenase when compared with the highest homologous [NiFe]-hydrogenase system previously reported (from Synechocystis). This new P. furiosus system will allow further engineering of SHI and provide hydrogenase for efficient in vitro biohydrogen production.


Assuntos
Proteínas Arqueais/biossíntese , Citoplasma/enzimologia , Hidrogênio/metabolismo , Hidrogenase/biossíntese , Engenharia Metabólica , Pyrococcus furiosus/enzimologia , Proteínas Arqueais/genética , Biocombustíveis , Domínio Catalítico/fisiologia , Citoplasma/genética , Expressão Gênica , Hidrogenase/genética , Maltose/metabolismo , Maltose/farmacologia , Óperon/fisiologia , Pyrococcus furiosus/genética , Pyrococcus furiosus/crescimento & desenvolvimento , Edulcorantes/metabolismo , Edulcorantes/farmacologia
6.
Angew Chem Int Ed Engl ; 52(2): 724-8, 2013 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136119

RESUMO

Nuclear inelastic scattering of (57)Fe labeled [NiFe] hydrogenase is shown to give information on different states of the enzyme. It was thus possible to detect and assign Fe-CO and Fe-CN bending and stretching vibrations of the active site outside the spectral range of the Fe-S cluster normal modes.


Assuntos
Hidrogenase/química , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Hidrogenase/metabolismo , Compostos de Ferro/química , Modelos Moleculares , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
7.
Nat Methods ; 6(8): 606-12, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19620974

RESUMO

We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.


Assuntos
Proteínas/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos , Proteínas de Bactérias/química , Desenho de Equipamento , Modelos Moleculares , Conformação Proteica , Pyrococcus furiosus/metabolismo , Difração de Raios X/instrumentação
8.
BMC Bioinformatics ; 12: 64, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356119

RESUMO

BACKGROUND: Metal-containing proteins comprise a diverse and sizable category within the proteomes of organisms, ranging from proteins that use metals to catalyze reactions to proteins in which metals play key structural roles. Unfortunately, reliably predicting that a protein will contain a specific metal from its amino acid sequence is not currently possible. We recently developed a generally-applicable experimental technique for finding metalloproteins on a genome-wide scale. Applying this metal-directed protein purification approach (ICP-MS and MS/MS based) to the prototypical microbe Pyrococcus furiosus conclusively demonstrated the extent and diversity of the uncharacterized portion of microbial metalloproteomes since a majority of the observed metal peaks could not be assigned to known or predicted metalloproteins. However, even using this technique, it is not technically feasible to purify to homogeneity all metalloproteins in an organism. In order to address these limitations and complement the metal-directed protein purification, we developed a computational infrastructure and statistical methodology to aid in the pursuit and identification of novel metalloproteins. RESULTS: We demonstrate that our methodology enables predictions of metal-protein interactions using an experimental data set derived from a chromatography fractionation experiment in which 870 proteins and 10 metals were measured over 2,589 fractions. For each of the 10 metals, cobalt, iron, manganese, molybdenum, nickel, lead, tungsten, uranium, vanadium, and zinc, clusters of proteins frequently occurring in metal peaks (of a specific metal) within the fractionation space were defined. This resulted in predictions that there are from 5 undiscovered vanadium- to 13 undiscovered cobalt-containing proteins in Pyrococcus furiosus. Molybdenum and nickel were chosen for additional assessment producing lists of genes predicted to encode metalloproteins or metalloprotein subunits, 22 for nickel including seven from known nickel-proteins, and 20 for molybdenum including two from known molybdo-proteins. The uncharacterized proteins are prime candidates for metal-based purification or recombinant approaches to validate these predictions. CONCLUSIONS: We conclude that the largely uncharacterized extent of native metalloproteomes can be revealed through analysis of the co-occurrence of metals and proteins across a fractionation space. This can significantly impact our understanding of metallobiochemistry, disease mechanisms, and metal toxicity, with implications for bioremediation, medicine and other fields.


Assuntos
Biologia Computacional/métodos , Metaloproteínas/análise , Proteoma/análise , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Bases de Dados de Proteínas , Processamento Eletrônico de Dados/métodos , Metaloproteínas/química , Metaloproteínas/isolamento & purificação , Metais/análise , Metais/química , Metais/metabolismo , Molibdênio/química , Níquel/química , Domínios e Motivos de Interação entre Proteínas , Pyrococcus furiosus/metabolismo
9.
Biochemistry ; 50(23): 5220-35, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21500788

RESUMO

We have used (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to study oxidized and reduced forms of the [4Fe-4S] cluster in the D14C variant ferredoxin from Pyrococcus furiosus (Pf D14C Fd). To assist the normal-mode assignments, we conducted NRVS with D14C ferredoxin samples with (36)S substituted into the [4Fe-4S] cluster bridging sulfide positions, and a model compound without ligand side chains, (Ph(4)P)(2)[Fe(4)S(4)Cl(4)]. Several distinct regions of NRVS intensity are identified, ranging from "protein" and torsional modes below 100 cm(-1), through bending and breathing modes near 150 cm(-1), to strong bands from Fe-S stretching modes between 250 and ∼400 cm(-1). The oxidized ferredoxin samples were also investigated by resonance Raman (RR) spectroscopy. We found good agreement between NRVS and RR frequencies, but because of different selection rules, the intensities vary dramatically between the two types of spectra. The (57)Fe partial vibrational densities of states for the oxidized samples were interpreted by normal-mode analysis with optimization of Urey-Bradley force fields for local models of the [4Fe-4S] clusters. Full protein model calculations were also conducted using a supplemented CHARMM force field, and these calculations revealed low-frequency modes that may be relevant to electron transfer with Pf Fd partners. Density functional theory (DFT) calculations complemented these empirical analyses, and DFT was used to estimate the reorganization energy associated with the [Fe(4)S(4)](2+/+) redox cycle. Overall, the NRVS technique demonstrates great promise for the observation and quantitative interpretation of the dynamical properties of Fe-S proteins.


Assuntos
Proteínas de Bactérias/química , Ferredoxinas/química , Ferro/química , Pyrococcus furiosus/metabolismo , Enxofre/química , Proteínas de Bactérias/metabolismo , Ferredoxinas/metabolismo , Ferro/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Análise Espectral Raman , Enxofre/metabolismo
10.
Appl Environ Microbiol ; 77(7): 2232-8, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21317259

RESUMO

In attempts to develop a method of introducing DNA into Pyrococcus furiosus, we discovered a variant within the wild-type population that is naturally and efficiently competent for DNA uptake. A pyrF gene deletion mutant was constructed in the genome, and the combined transformation and recombination frequencies of this strain allowed marker replacement by direct selection using linear DNA. We have demonstrated the use of this strain, designated COM1, for genetic manipulation. Using genetic selections and counterselections based on uracil biosynthesis, we generated single- and double-deletion mutants of the two gene clusters that encode the two cytoplasmic hydrogenases. The COM1 strain will provide the basis for the development of more sophisticated genetic tools allowing the study and metabolic engineering of this important hyperthermophile.


Assuntos
Deleção de Genes , Genética Microbiana/métodos , Pyrococcus furiosus/genética , Recombinação Genética , Transformação Genética , Proteínas Arqueais/genética , Hidrogenase/genética , Pyrococcus furiosus/enzimologia
11.
Mol Cell Proteomics ; 8(4): 735-51, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19043064

RESUMO

Virtually all cellular processes are carried out by dynamic molecular assemblies or multiprotein complexes, the compositions of which are largely undefined. They cannot be predicted solely from bioinformatics analyses nor are there well defined techniques currently available to unequivocally identify protein complexes (PCs). To address this issue, we attempted to directly determine the identity of PCs from native microbial biomass using Pyrococcus furiosus, a hyperthermophilic archaeon that grows optimally at 100 degrees C, as the model organism. Novel PCs were identified by large scale fractionation of the native proteome using non-denaturing, sequential column chromatography under anaerobic, reducing conditions. A total of 967 distinct P. furiosus proteins were identified by mass spectrometry (nano LC-ESI-MS/MS), representing approximately 80% of the cytoplasmic proteins. Based on the co-fractionation of proteins that are encoded by adjacent genes on the chromosome, 106 potential heteromeric PCs containing 243 proteins were identified, only 20 of which were known or expected. In addition to those of unknown function, novel and uncharacterized PCs were identified that are proposed to be involved in the metabolism of amino acids (10), carbohydrates (four), lipids (two), vitamins and metals (three), and DNA and RNA (nine). A further 30 potential PCs were classified as tentative, and the remaining potential PCs (13) were classified as weakly interacting. Some major advantages of native biomass fractionation for PC identification are that it provides a road map for the (partial) purification of native forms of novel and uncharacterized PCs, and the results can be utilized for the recombinant production of low abundance PCs to provide enough material for detailed structural and biochemical analyses.


Assuntos
Proteínas Arqueais/análise , Fracionamento Químico/métodos , Complexos Multiproteicos/análise , Proteoma/análise , Pyrococcus furiosus/metabolismo , Aminoácidos/metabolismo , Proteínas Arqueais/isolamento & purificação , Citoplasma/metabolismo , Desnaturação Proteica , Multimerização Proteica
12.
J Am Chem Soc ; 132(20): 6914-6, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20429508

RESUMO

We have applied (57)Fe nuclear resonance vibrational spectroscopy (NRVS) to identify protein-bound dinitrosyl iron complexes. Intense NRVS peaks due to vibrations of the N-Fe-N unit can be observed between 500 and 700 cm(-1) and are diagnostic indicators of the type of iron dinitrosyl species present. NRVS spectra for four iron dinitrosyl model compounds are presented and used as benchmarks for the identification of species formed in the reaction of Pyrococcus furiosus ferredoxin D14C with nitric oxide.


Assuntos
Ferro/química , Ferro/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Proteínas/química , Proteínas/metabolismo , Vibração , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ferredoxinas/química , Ferredoxinas/metabolismo , Ferro/análise , Óxidos de Nitrogênio/análise , Pyrococcus furiosus , Análise Espectral
13.
Arch Microbiol ; 192(6): 447-59, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20379702

RESUMO

Pyrococcus furiosus is a shallow marine, anaerobic archaeon that grows optimally at 100 degrees C. Addition of H(2)O(2) (0.5 mM) to a growing culture resulted in the cessation of growth with a 2-h lag before normal growth resumed. Whole genome transcriptional profiling revealed that the main response occurs within 30 min of peroxide addition, with the up-regulation of 62 open reading frames (ORFs), 36 of which are part of 10 potential operons. More than half of the up-regulated ORFs are of unknown function, while some others encode proteins that are involved potentially in sequestering iron and sulfide, in DNA repair and in generating NADPH. This response is thought to involve primarily damage repair rather than protection, since cultures exposed to sub-toxic levels of H(2)O(2) were not more resistant to the subsequent addition of H(2)O(2) (0.5-5.0 mM). Consequently, there is little if any induced protective response to peroxide. The organism maintains a constitutive protective mechanism involving high levels of oxidoreductase-type enzymes such as superoxide reductase, rubrerythrin, and alkyl hydroperoxide reductase. Related hyperthermophiles contain homologs of the proteins involved in the constitutive protective mechanism but these organisms were more sensitive to peroxide than P. furiosus and lack several of its peroxide-responsive ORFs.


Assuntos
Proteínas Arqueais/metabolismo , Reparo do DNA , Peróxido de Hidrogênio/metabolismo , Estresse Oxidativo , Pyrococcus furiosus/metabolismo , Proteínas Arqueais/genética , DNA Arqueal/genética , Regulação da Expressão Gênica em Archaea , Hemeritrina/genética , Hemeritrina/metabolismo , Peróxido de Hidrogênio/farmacologia , NADP/metabolismo , Fases de Leitura Aberta , Oxirredução , Estresse Oxidativo/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Pyrococcus furiosus/enzimologia , Pyrococcus furiosus/genética , Pyrococcus furiosus/crescimento & desenvolvimento , Rubredoxinas/genética , Rubredoxinas/metabolismo , Thermococcus/genética , Thermococcus/metabolismo , Transcrição Gênica , Regulação para Cima
14.
Mol Cell Biol ; 27(14): 5214-24, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17485445

RESUMO

The myristoylated calcium sensor SOS3 and its interacting protein kinase, SOS2, play critical regulatory roles in salt tolerance. Mutations in either of these proteins render Arabidopsis thaliana plants hypersensitive to salt stress. We report here the isolation and characterization of a mutant called enh1-1 that enhances the salt sensitivity of sos3-1 and also causes increased salt sensitivity by itself. ENH1 encodes a chloroplast-localized protein with a PDZ domain at the N-terminal region and a rubredoxin domain in the C-terminal part. Rubredoxins are known to be involved in the reduction of superoxide in some anaerobic bacteria. The enh1-1 mutation causes enhanced accumulation of reactive oxygen species (ROS), particularly under salt stress. ROS also accumulate to higher levels in sos2-1 but not in sos3-1 mutants. The enh1-1 mutation does not enhance sos2-1 phenotypes. Also, enh1-1 and sos2-1 mutants, but not sos3-1 mutants, show increased sensitivity to oxidative stress. These results indicate that ENH1 functions in the detoxification of reactive oxygen species resulting from salt stress by participating in a new salt tolerance pathway that may involve SOS2 but not SOS3.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Homeostase , Mutação/genética , Estresse Oxidativo , Rubredoxinas/metabolismo , Adaptação Fisiológica/efeitos dos fármacos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase/efeitos dos fármacos , Dados de Sequência Molecular , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Potássio/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Rubredoxinas/química , Rubredoxinas/genética , Sais/farmacologia , Cloreto de Sódio/farmacologia
15.
Metab Eng ; 10(6): 394-404, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18647659

RESUMO

Hydrothermal microbiotopes are characterized by the consumption and production of molecular hydrogen. Heterotrophic hyperthermophilic microorganisms (growth T(opt)> or =80 degrees C) actively participate in the production of H(2) in these environments through the fermentation of peptides and carbohydrates. Hyperthermophiles have been shown to approach the theoretical (Thauer) limit of 4 mol of H(2) produced per mole of glucose equivalent consumed, albeit at lower volumetric productivities than observed for mesophilic bacteria, especially enterics and clostridia. Potential advantages for biohydrogen production at elevated temperatures include fewer metabolic byproducts formed, absence of catabolic repression for growth on heterogeneous biomass substrates, and reduced loss of H(2) through conversion to H(2)S and CH(4) by mesophilic consortia containing sulfate reducers and methanogens. To fully exploit the use of these novel microorganisms and their constituent hydrogenases for biohydrogen production, development of versatile genetic systems and improvements in current understanding of electron flux from fermentable substrates to H(2) in hyperthermophiles are needed.


Assuntos
Archaea/metabolismo , Fontes de Energia Bioelétrica , Sulfeto de Hidrogênio/metabolismo , Hidrogênio/metabolismo , Metano/metabolismo , Temperatura Alta
16.
Ann N Y Acad Sci ; 1125: 252-66, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18378597

RESUMO

Hydrogenases are enzymes found in all domains of life that catalyze a remarkably simple chemistry, the reversible oxidation of molecular hydrogen to protons and electrons. In order to perform this chemistry, cells have evolved, several different times, intricate organometal complexes built around a binuclear Ni-Fe or Fe-Fe center, with bound CO and CN(-) groups, as well as multiple FeS centers. These complicated enzymes have been an area of intense study for many decades, with interest peaking on the occasions of major increases in national energy costs. Interest in biologically generated hydrogen as a potential substitute for fossil fuels is again at the forefront, and the new tools of the postgenomic world available for manipulating these enzymes make it a truly viable possibility. Hydrogenases from hyperthermophilic microorganisms such as Pyrococcus furiosus and Thermotoga maritima, with optimal growth temperatures near 100 degrees C, are of particular interest and promise for elucidating and manipulating these enzymatic mechanisms.


Assuntos
Hidrogenase/metabolismo , Thermofilaceae/enzimologia , Thermotoga maritima/enzimologia , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Óleos Combustíveis , Hidrogênio/metabolismo
17.
J Inorg Biochem ; 101(3): 375-84, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17204331

RESUMO

We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.


Assuntos
Ferro/química , Espectroscopia de Ressonância Magnética/métodos , Pyrococcus furiosus/química , Rubredoxinas/química , Espectrofotometria Infravermelho/métodos , Análise de Fourier , Modelos Químicos , Estrutura Secundária de Proteína/efeitos da radiação , Análise Espectral Raman , Relação Estrutura-Atividade , Vibração
18.
Artigo em Inglês | MEDLINE | ID: mdl-17620707

RESUMO

The hypothetical protein PF0899 is a 95-residue peptide from the hyperthermophilic archaeon Pyrococcus furiosus that represents a gene family with six members. P. furiosus ORF PF0899 has been cloned, expressed and crystallized and its structure has been determined by the Southeast Collaboratory for Structural Genomics (http://www.secsg.org). The structure was solved using the SCA2Structure pipeline from multiple data sets and has been refined to 1.85 A against the highest resolution data set collected (a presumed gold derivative), with a crystallographic R factor of 21.0% and R(free) of 24.0%. The refined structure shows some structural similarity to a wedge-shaped domain observed in the structure of the major capsid protein from bacteriophage HK97, suggesting that PF0899 may be a structural protein.


Assuntos
Proteínas Arqueais/química , Pyrococcus furiosus/química , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Fases de Leitura Aberta/genética , Estrutura Secundária de Proteína , Pyrococcus furiosus/genética
19.
Dalton Trans ; 45(17): 7215-9, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27063792

RESUMO

The D14C variant of Pyrococcus furiosus ferredoxin provides an extraordinary framework to investigate a [3Fe-4S] cluster at two oxidation levels and compare the results to its physiologic [4Fe-4S] counterpart in the very same protein. Our spectroscopic and computational study reveals vibrational property changes related to the electronic and structural aspects of both Fe-S clusters.


Assuntos
Ferredoxinas , Pyrococcus furiosus/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Análise Espectral
20.
PLoS One ; 6(10): e26569, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22039508

RESUMO

Hydrogen gas is an attractive alternative fuel as it is carbon neutral and has higher energy content per unit mass than fossil fuels. The biological enzyme responsible for utilizing molecular hydrogen is hydrogenase, a heteromeric metalloenzyme requiring a complex maturation process to assemble its O(2)-sensitive dinuclear-catalytic site containing nickel and iron atoms. To facilitate their utility in applied processes, it is essential that tools are available to engineer hydrogenases to tailor catalytic activity and electron carrier specificity, and decrease oxygen sensitivity using standard molecular biology techniques. As a model system we are using hydrogen-producing Pyrococcus furiosus, which grows optimally at 100°C. We have taken advantage of a recently developed genetic system that allows markerless chromosomal integrations via homologous recombination. We have combined a new gene marker system with a highly-expressed constitutive promoter to enable high-level homologous expression of an engineered form of the cytoplasmic NADP-dependent hydrogenase (SHI) of P. furiosus. In a step towards obtaining 'minimal' hydrogenases, we have successfully produced the heterodimeric form of SHI that contains only two of the four subunits found in the native heterotetrameric enzyme. The heterodimeric form is highly active (150 units mg(-1) in H(2) production using the artificial electron donor methyl viologen) and thermostable (t(1/2) ∼0.5 hour at 90°C). Moreover, the heterodimer does not use NADPH and instead can directly utilize reductant supplied by pyruvate ferredoxin oxidoreductase from P. furiosus. The SHI heterodimer and POR therefore represent a two-enzyme system that oxidizes pyruvate and produces H(2) in vitro without the need for an intermediate electron carrier.


Assuntos
Hidrogenase/metabolismo , Pyrococcus furiosus/enzimologia , Piruvato Sintase/metabolismo , Catálise , Domínio Catalítico , Ligação Proteica , Recombinação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA